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J. Phys. A: Math. Gen. 15 (1982) 1437-1461. Printed in Great Britain 

Relations between Cartesian and spherical components of 
irreducible Cartesian tensors 

Jean-Marie Normand and Jacques Raynal 
Service de Physique ThCorique, CEN-Saclay, 91 191 Cif-sur-Yvette, Cedex, France 

Received 16 October 1981 

Abstract. Explicit formulae which relate Cartesian and spherical components of irreducible 
Cartesian tensors are derived. For the description of spin-s particles, explicit formulae for 
the Cartesian tensors and the spherical tensors are given in terms of symmetrised products 
of spin operators. 

1. Introduction 

For a long time, nuclear reactions have dealt with polarised spin-i and spin-1 particles. 
For these studies, the Madison convention (1971) recommends the use of two kinds of 
operators which are either spherical tensors (Lakin 1955) or Cartesian tensors (Gold- 
farb 1958). With the construction of heavy-ion accelerators, polarised nuclei with 
higher spin are now available for nuclear reactions. The aim of this work is to extend the 
two previous kinds of operators to any spin and to study the relations between them. 

Section 2 is devoted to the general relations between the Cartesian and the spherical 
components in the special case of irreducible Cartesian tensors. After a brief recall in 
0 2.1 of the general Cartesian-spherical transformation, the irreducible Cartesian 
tensors are defined in 0 2.2 and the properties of their components are given. The 
explicit formulae which relate their Cartesian and spherical components are derived in 
00 2.3 and 2.4. 

Section 3 is an application of the previous one to operators belonging to the algebra 
generated by the spin operators S,, S, and S, associated with the description of a spin-s 
particle. The definition and some properties of bases of operators which are Cartesian 
or spherical components of irreducible Cartesian tensors are recalled in 0 3.1. An 
explicit expression for these basis operators in terms of symmetrised products of spin 
operators is derived in 0 3.2. Taking into account the usual normalisations, we give in 
0 3.3 the expressions for any operator either in terms of a basis of spherical component 
operators or in terms of an overcomplete set of Cartesian component operators. The 
relation between these latter operators can be taken into account to express any 
operator in terms of a minimum set of linear combinations of Cartesian component 
operators. A simple way to do this is explained. 

Finally, in the conclusion we discuss the use of these three kinds of expansions for 
any operator in the description of nuclear reactions. It is then shown that the spherical 
component operators are the easiest to handle. 

Large tables of coefficients are given for applications, although these coefficients are 
easy to obtain from explicit formulae except for the Tchebichef polynomials for which 
we used a computer. 

0305-4470/82/051437 + 25$02.00 @ 1982 The Institute of Physics 1437 



1438 J-M Normand and J Raynal 

2. Cartesian-spherical transformations for irreducible Cartesian tensors 

2.1. General formulation of Cartesian-spherica 1 transformations 

With respect to the three-dimensional rotation group, a tensor (Normand 1980) 
T = TI...' of order 1 and with each of its 1 ranks equal to one is defined by 3' components 
which belong to an associative but not necessarily commutative algebra over the 
complex field C. The Cartesian components (T , l . . . i l ;  ik = x, y ,  z )  and the spherical 
components (TA;.,!,l; mk = 1,0, - 1 )  are characterised by their law of transformation: 

I 

R = (Rj' )  E SO(3) RTi,.,.il= 1 Ti..,i; n Rli ( l a )  
i i  ..... i ;  & = I  

where g l ( R )  is the irreducible rotation matrix for spin one. Since, up to an 
equivalence, 9' is the only unitary and irreducible three-dimensional representation of 
S 0 ( 3 ) ,  the Cartesian and spherical components are related by 

I 

& = l  
TA,.AI = 1 Ti,..,i, n (ik11mk) ( 2 a )  . .  

11. .... 11 

where the matrix ( ( i l lm) )  is a multiple 

1 0  
-1/J2 o 

( ( i l lm>)=c  -i /J2 o 
I o  1 

of a unitary matrix: 

1/J2 x 
- 1  

-i /J2 j y C E C .  

0 2  

( 3 )  

As is usual, we will assume from now on that 

c2 = * l  i.e. c = * 1  or *i; (4) 

e.g. c = 1 in the Madison convention (1971), Edmonds (1968) and Normand and 
Raynal (1981), c = i in Fano and Racah (1959) and c = i K  in Stone (1975, 1976). The 
matrix ( ( i l lm) )  is then unitary: 

(illm)* =(Imli) .  ( 5 )  

(i l lm)* = c-*(-1)'"(i11 -m>.  (6) 

A further property reads 

Therefore, if the Cartesian components are real quantities or Hermitian operators, one 
gets 

(7 )  

Any tensor T1...' of order 1 greater than one can be decomposed into irreducible 
of integer rank j ,  0 s j s 1, and characterised by a coupling scheme 

specified by 1-2 intermediate couplings A = ( A k ;  k = 1 ,  . . . , 1-2)  and their order 

TA,..;;or+ - 2 / ( - 1 ) ! L - 1  m,T-1 ... I 
= C  ml -mi .  

tensors T'l... 1 obZ 11 



Irreducible Cartesian tensors 

symbolically denoted by a. One then defines a transformation 
~ ( 1  ... 1 , A a  ) j  - 

m -  1 Til., ,i~(il . . . idAa,jm) 
i l  ,....if 

where 

1439 

(8) 

the coupling coefficients CAaA;..,!,IA being products of 1 - 1 Clebsch-Gordan coefficients. 
From the orthogonality relations of Clebsch-Gordan coefficients, the inverse trans- 
formation of equation (8) reads, for a given a, 

where 

From equation ( 5 )  the transformation above is unitary: 

(i l  . . . iflAa,jm)* = (Aa, jmlil . . . i l). ( 1 2 )  

A further property follows from equation (6) and the symmetry of Clebsch-Gordan 
coefficients under the change of sign of all indices mk, p k  and m, namely 

(13) ( i l  . . . i,lAa, jm)* = ~ - ~ ’ ( - l ) ’ - ’ ~ ~  ( i l  . . . irlAa, j - m).  

Thus, under the same conditions as for equation (7), one finds 
~ ( 1  ... 1 , A a )  j * o r +  -21 f-j+m ( 1  1 ,Aa) i  ,,, = C  ( - 1 )  T ’’’ m. 

2.2. Irreducible Cartesian tensors 

Attention is now focused on the couplings to the highest value 1 of j ,  and the following is 
shown: 

(i) The coefficients (il . . . iflAa, lm) are independent of the coupling scheme ha, and 
invariant under any permutation of the indices ik. Hence, they will henceforth be 
denoted by 

( 1 5 )  
where the indices x, y and z occur, respectively, p ,  q and r times in il . . . i, ( p  + q + r = 1).  

(pqrllm) = (i l  . . . ifIAa, lm) 

(ii) The contraction of any two Cartesian indices i, and ib leads to 

(i l  . . . i,. . . ib. . . illha, lm)aiaib 
i,.ib 

= ( p ‘ + 2  q ’ r ’ l lm)+(p ’q ’+2  rfllm)+(p’q’r’+211m)= O (16) 
where p’+q’ + r ‘  = 1-2. 

These properties are based on the independence of the coupling coefficients with j 
equal to the highest value 1 with respect to the coupling scheme. Indeed, for two orders 
of couplings one has a priori 

(17) 1 . . . 1  f 1 . . . 1  1 
CAam,  m r m = c  cA*a’m,  mfmR(Aa, A ’ a ’ ,  Im) 

A ’  
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where the recoupling coefficients R(ha,  A ' a ' ,  lm) are multiples of 3(1- l)j symbols. It 
follows from the Wigner-Eckart theorem that these latter coefficients are independent 
of m ;  hence, setting m = 1 yields R(Aa,  A ' a ' ,  lm)  = 1 as a product of 2(1- 1) Clebsch- 
Gordan coefficients all equal to one. Moreover, due to the coupling to the highest value 
I, the sum over the intermediate couplings A' in (17) contains only one term (QED). One 
can then use the step-by-step coupling scheme considered by Stone (1973,  and apply 
his results to the special coupling to the highest value 1. Let us nevertheless give a 
straightforward proof of properties (i) and (ii). The CA,:, A I ;  are invariant under any 
permutation of the indices mk, since this corresponds to a special change of the coupling 
scheme. Property (i) then arises from equation (9). Choosing in equation (16) a 
coupling scheme where the ath and the bth spins one are coupled together necessarily to 
two, one finds, using equations (5)  and (6), 

C S,,,, ( i l  . . . i,. . . ib.. . illlm)a ( I lm,mbJ2~~CL)(i , I lm,)( ibl1mb)~~,~, 
b l b  l,,rb.m,.mb 

= c - ~ J ~  (1lm,m~l2CL)(11m,mbI00) (18) 

where only the relevant terms are explicitly written. Property (ii) then follows from the 
orthogonality relations of Clebsch-Gordan coefficients. 

An explicit expression and some properties of coefficients (pqrllm) are derived 
below in § 2.4. 

By definition, an irreducible Cartesian tensor, also said to be in natural form (Coope 
et a1 1965), is a tensor of order 1 with 1 ranks one, such that all its irreducible tensors 
vanish except the one with the highest rank 1, denoted from now on by (Ti)'. The 
previously derived properties of (pqrllm) imply that such a tensor T is completely 
symmetrical and traceless: namely, from equations (9), (12) and (15), its Cartesian 
components (T'),,  I t  are invariant under any permutation of indices il . . . if, and they 
will henceforth be denoted by 

(Tf)pqr = (Tt);( lmI~qr)  p +4 + r  = 1. (19) 

( T f ) p ' + 2 q ' r ' + ( T l ) p ' q ' + ~ r ' +  ( T l ) p ' q ' r ' + 2  = O  

Furthermore, equation (16) yields 

p '  + 4' + r' = I - 2, (20)  

which means that Tf is traceless on contraction of any pair of Cartesian indices. 
Actually, 7'' is characterised by the two properties above (Coope et a1 1965). An 
irreducible Cartesian tensor Tl has 21 + 1 linearly independent components ( Tf); .  
Therefore, its 3' Cartesian components are not independent for 1 3 2 :  on the one hand 
they are completely symmetrical and thus there are 

(21) 

components (T,)w,; and on the other hand they have to satisfy the nf -2  relations (20). 
One thus recovers the proper number of linearly independent components for 

(22) 

nf = $(/ + I)(/ + 2) 

21 + 1 = nl - nl-2. 

2.3. Spherical components in terms of the Cartesian ones 

Since nr > 21 + 1 for 1 5 2, the expression for the spherical components of 7'1 in terms of 
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its Cartesian components arising from equation (8) ,  i.e. 

p + q + r = l  

is not unique. The extra factor l ! / p ! q ! r !  is the number of sequences of Cartesian 
indices i l  . . . il which correspond to given values of p ,  q and r. Taking advantage of this 
freedom, one now derives a minimal expansion for the spherical components 

p . w  
p + q + r = l  

where minimal means that each (Tl); is expressed in terms of the smallest number of 
Cartesian components, and the (pqrllm) are coefficients determined below. 

behave under the rotation 
group as the monomials xpyqzr. From equations (2a) and (3) one thus has 

Being completely symmetrical, the components ( 

where = means that a monomial xPyqzr stands for (Tl)w, and 9 t m ( p ,  6, Q )  is a solid 
harmonics with 

(26 )  

The components ( Tl)A are obtained by a repeated action of the infinitesimal generator 
J-  of the representation considered, which amounts to applying 

x = p  sin 19 cos cp y = p sin 6 sin Q z = p cos 6. 

a a 
j -  = (x -iy)--2z- 

az a(x +iy) 

on the right-hand side of equation (25), yielding 

In terms of monomials the constraints (20) read 

x2+y2+z2= 0. (29) 

Taking into account this relation in the expression for 91m, the minimum number of 
monomials xpyqzr is then obtained by replacing the two monomials x2  + y 2  by the single 
one -2 . Since 

(30) 

the above procedure amounts to taking in 9 t m  only the coefficient of the highest degree 
in cos 6. One thereby finds 

2 

2 2 2  x2 + y = p 2  - p2  cos2 6 -2 = - p  cos 6, 

(cf table 1 for 1 s 4 )  and finally 
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Table 1. Spherical components (TI),!, of an irreducible Cartesian tensor T, in terms of its 
Cartesian components (T,)pl,, here denoted by xDyqz', equation (31). The coefficient CI 

occurs in the relation between the (TI),!, and the solid harmonics, equation (28). 

c l = / ! (  (21+ ' )  1)(21)! 

0 0 

1 i 1  
0 

2 i 2  
*1 

0 

3 *3 
i 2  
*1 

0 

4 *4 
*3 
*2 
i 1  

0 

1 1 

The same results can be obtained from 

where, using equation (27) ,  j!-"(x + iy)' is computed recursively, replacing at each step 
(x +iy)(x -iy) by -2' to take into account equation (29) .  

It follows from equation (14) ,  or directly from equation (32b) ,  that the coefficients 
( p q r l h )  satisfy 

(34)  -21 (pqrllm)*=c (-1)"'(pqrI~--m), 

and a further property reads 

2.4. Cartesian components in terms of the spherical ones 

The analogy between the monomials xPyqzr ( p  + q + r = I )  and the Cartesian 
components ( Tl)wr provides us with a method of computing the coefficients (Im Ipqr) 
which occur in equation (19) .  The expansion of xpyqzr in terms of monomials 
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( x  +iy)'(x -iy)'z' reads 

Replacing ( x  + iy)(x - i y )  by - z 2  to take into account equation (29), and using equation 
(31), it becomes 

where 

m =p+q-2&.  

Therefore, we obtain 

(Imlpqr) = (pqrl" 

(38) 

The value of the quantity C ( p ,  q, m )  above is given in table 2 for constant p +4 s 8. 
Let us now derive some properties of coefficients (lmlpqr). 

Symmetry relations. From equation (38) these coefficients vanish for p + + m odd. 
Furthermore, the symmetries of hypergeometric series imply 

(41) C(4, P, m )  = (-1)"C(p, 4, -m) C(p ,  4, m )  = (-1) 

( Im I pqr)  = (-I)( p+q+m) /2*q-p  I (lmJqppr)= (-l)p(f-mlpqr). 

( lm I ppr)  = 0 if p + t m  odd (43) 

(101 p q d  = 0 if p odd. (44) 

( ~ m  Ipqr)* = ~ ~ ' ( - i ) " ( r  - ~ I p q r ) ,  

( p + q + m ) / 2  

which yields 

(42) 
In particular, these relations induce 

Furthermore, it is recalled that the coefficients (Imlpqr) satisfy equation (13), i.e. 

(45) 

as can be checked directly from equation (39). 

Generating function. Setting 

x + i y = u  x - iy  = - l / u  z = 1  
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Table 2. Cartesian components (T,)w, of an irreducible Cartesian tensor T in terms of the 
AY,,,, equation (51). The factor in front of each A;,,, of this table is equal to C(p, q. m ) ,  
equation (40). 

0 

1 
0 

2 
1 
0 

3 
2 
1 
0 

4 
3 
2 
1 
0 

5 
4 
3 
2 
1 
0 

6 
5 
4 
3 
2 
1 
0 

7 
6 
5 
4 
3 
2 
1 
0 

8 
7 
6 
5 
4 
3 
2 
1 
0 

0 

0 
1 

0 
1 
2 

0 
1 
2 
3 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 
8 

1 

1-1 

1-2 

1-3 

1-4  

1 - 5  

1-6 

1-7 

1 - 8  
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in x p y q z r  to take into account the relation (29), one gets, on comparing with equations 
(36) and (39), a generating function 

p+q+m even 

with p + q  + r  = 1 always. This generating function allows us to check the unitary 
character of the Cartesian-spherical transformation in the special case considered. 
Indeed, one establishes 

which yields 

p + q + r = l  

Special value. It arises from equations (39) and (40)  that 

Taking advantage of equation (421, the expression (19) for the Cartesian 
components ( T,)wr in terms of the spherical components (TI),!, can be rewritten as 

p+q+m even 

where 

with E = * l  and as always 1 = p + q + r. These expressions for ( are listed in table 2 
for p + q s 8. 

Since A;d vanishes, there are 21 + 1 linearly independent objects {A,?o, A' Im;  m = 
1 ,  . . . , I, E = f 1 )  which can be considered instead of the 21 + 1 spherical components 
(T,),!,. Using the minimal expansion (24) for the (TI),!,, the A;, read, in terms of the 
Cartesian components (Tl)wr = x p y q z ' ,  

Actually, instead of the AYm one usually considers proportional quantities normalised in 
such a way that the coefficient of the monomial with the highest degree in x, i.e. 
forgetting z ,  x m  or x m - ' y ,  be one, except if there exists a monomial y m  and no 
monomial X" in which case the coefficient of y" is taken equal to one. Casting the 
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dependence upon z aside, one then defines polynomials B k  in x and y, distinguishing 
four cases: 

A;,,, = c ‘ ~ ~ B & z ‘ - ”  (54a) 

n = 0, 1, . . . (546) 

These polynomials Bk are listed in table 3 for 1 s 6. 

Table 3. Polynomials BL in x and y which occur in the minimal expansion of the A;,,, in 
terms of the spherical components  TI)^,, here denoted by xpy4z‘, equations (546-e). 

m E B‘, 

0 1 

1 1 
-1 

2 1 
- 1  

3 1 
- 1  

4 1 
- 1  

5 1 
-1 

6 1 
- 1  

1 

Y 
X 

x2 - y2 

y3 -3x2y  
x 3  - 3xy2 

x3y -xy3  

y5-  1ox2y3+5x4y 
x 5  - 1ox3y2+5xy4 

x5y - y x 3 y 3 + x y 5  

XY 

x 4 - 6 x 2 y 2 + y 4  

x6- 15x4y2+ 15x2y4- y6 

3. Tensors built with spin operators 

3.1. Description of a spin-s particle 

To describe a spin-s particle one considers the algebra ds over the complex field of 
operators A, functions of the fundamental observables Si (i = x ,  y, z )  which satisfy the 
commutation relations of angular momenta: 

[si, sj] = i&ijkSk.  ( 5 5 )  

These operators act in the (2s + 1)-dimensional space ZS spanned by the orthonormal 
basis (Isp); ,U = s, s - 1, , . . , -s) which forms a standard basis of the representation of 
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the rotation group on &Ps: 

(s, * is, )ISCL) = J(s 7 CL )(s * p + 1 )ISCL * 1) SzIsp)= CLISCL) (56a) 

s: +s’, +s: = s(s + 1 ) l .  (56b) 

The operators A in dr transform under the rotation group according to the adjoint 
representation, the infinitesimal generators of which are defined by 

J ,A  = [Si, A]. (57) 

The algebra dr is spanned by the (2s + 1)2 uncoupled generalised projection operators 
)sp)(sp’I, which are orthogonal in the following way: 

Tr[ls~)(SCL’I(ISY)(SY’I)+l = S,3S,~”,. ( 5 8 )  

Therefore, any operator A in Sa,, especially the density operator associated with the 
description of any physical state, can be expressed as 

A = c Isp)(sc~‘I  T~[A(~P)(scL‘I)+I= ~P)(wIA~P’)(sP’I. (59) 
,.&’ &.&’ 

Since we are interested in the behaviour of operators under the rotation group, it is 
convenient to define irreducible tensor operators which are proportional to coupled 
generalised projection operators (Raynal 1964, 1972): 

f =o, 1 , .  . a  , 2 s  
m = 1 , l -  1, . . . , - I  T,,!,= urf (-l)s-’“(ssp -p’[lm)lsp)(sp‘I 

&.fig 

where the arf are non-zero complex normalisation coefficients to be chosen. In terms of 
the notations for the tensorial character specified by Normand (1980), one has, from 
equations (1 1.12) and (1 1.13), 

Isp)(sp’I = P[:’y (610) 
T rm = a rl (-1)2scs~~ss)5fil~ (6 1 b) 

The operators Ts,!, span the algebra dr, and it follows from the orthogonality relation of 
Clebsch-Gordan coefficients that they are also orthogonal according to 

(62) 2 Tr(Tr,!,TriT) = lasll Sf&,,,. 

Any operator A in ds, e.g. a density operator, then reads 

One should notice that 

As is usual (Madison convention 1971), one from now on chooses 

a,/ = c“ (65) 
where the factor c is identical to the one considered previously, equation (4). One then 
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has 
T$=1 

Ts,!, Tr(ATsG ). 
1 A = - - -  

2s + 1 l.m 

Applying the results of 0 2.2, one defines from the T,,!, an irreducible Cartesian 
tensor Tsl, the only non-zero irreducible spherical components of which are the Ts,!,. The 
Cartesian components (Tsl)w, are then defined in terms of the basis of operators (T,,!,) 
by equation (19), or, using equation (60a) ,  in terms of the other basis of ds (Isp)(sp'I), 
i.e. 

( T ' 1 ) p q r  = c TS,!dlm Ipqr) ( 6 7 ~  1 

= c ' m  lscL)(sp'I(-l)s-II'(ssp -p'Ilm)(lmIpqr). (676) 

m 

m.w.w' 

It follows from equations (45) and (66b) that the operators ( 7 " 1 ) ~ ~  are Hermitian: 

(Ts,)hr= ( T s / ) p q r *  (68)  
Using the orthogonality relation (49) of coefficients (lmlpqr) and equation (66d) ,  one 
shows that any operator A in ds, e.g. a density operator, can be written as 

Hence, the operators ( Tsl)wn which are not linearly independent since they satisfy 
equation (20), form an overcomplete set of operators which span ds. Indeed, one can 
check, using equation (21), that they are in number 

which is greater than the dimension (2s + 1)' of d, for s > 5, the equality occurring for 
s = 0 and $. It should be noted that the operators ( TsOpqr are non-orthogonal in the trace 
meaning. The expression of ( Tsl)A in terms of the ( Tsr)wr is not unique and can be taken 
as the minimal expansion (24) derived in 0 2.3. 

3.2. Expression of tensors in terms of spin operators 

Our aim now is to express the previously defined irreducible Cartesian tensors Tsi in 
terms of products of the spin operators S,, S, and S,. Actually, one usually considers a 
multiple P,, of Tsl, 

with the normalisation condition 

from which n,1 is determined later in § 3.3. 
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One first derives the expression of the Cartesian component (Psl)~, in terms of the 
spin operators. It arises from equations (71) ,  (67b)  and (50)  that 

Hence, (Psi)ool is diagonal in the standard basis (ISM)) and can therefore be expressed in 
terms of S, only: 

~ ~ s 1 ) 0 0 /  =fs,(S,). (74)  

Furthermore, the diagonal matrix elements (sp I(P,,)~o~lsp) are proportional to the 
Clebsch-Gordan coefficients (ssp - p IlO), the orthogonality relation of which yields 

The fs , (p)  are thus orthogonal polynomials of the discrete variable p = s, s - 1, . . . , --S. 

They are multiples of the Tchebichef polynomials (Bateman 1953) t , ( p + s ) ,  the 
relevant properties of which are summed up in the appendix. It follows from the 
normalisation condition (72)  and equation (A10) that 

where [1/2] = 1/2 or (I - 1)/2 according to whether I is even or odd. The (PsOoo, are 
listed in table 4 for 1 s 10. Ohlsen (1972) gave similar results without pointing out the 
relation with the Tchebichef polynomials. 

Let us come to the (Psl)wr with p + q  f 0. It has been noted in § 2.3 that the (T,)w, 
behave under the rotation group as the monomials x p y q z r ,  and likewise for the 
proportional quantities Hence, the action on (Ps,)w, of the infinitesimal 
generators Ji of the representation considered, here the adjoint one, cf equation (57), 
amounts to applying the infinitesimal generators j ,  on x p y q z ' .  For instance, one gets 
with J, 

and similar equations hold with J,, and J,. It is not convenient to express the (Ps,),, in 
terms of ordered products S:SfSr, since the commutator of a spin operator with such a 
product of order a + p + y generates ordered products of all orders Ga + p + y. This is 
why we consider the completely symmetrical products of spin operators defined by 

the sum being over the (a + p + y ) ! / a  ! p ! y ! distinct permutations where S,, S, and S, 
occur, respectively, a, /3 and y times. The commutator of a spin operator with a 
symmetrised product of order a + /3 + y can then be expressed in terms of symmetrised 
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Table 4. Cartesian components (P,r)oo, in terms of the spin operator S,, equation (76).  The 
t, are the Tchebichef polynomials of a discrete variable, equation ( A l ) .  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 
1 
- S* 

1 
s(2s - 1 )  

1 
s(2s - l)(s - 1 )  

(3 s :  - K )  

[SS: - (3K - 1)S,] 

(2 s -5 ) !22[32x7Ss  - 5  x7(2K - 3 ) s ;  + ( 3 x 5 K 2 - 2  x S 2 K  +22 x 3)S,] 
(2s)!  

(2s -6 ) !  
(2s)!  

(2s - 7 ) !  
(2s)!  

2s - 8)! 
(2s)!  

22[3 x 7 x 11s: -3  x 5 x 7 ( 3 K  -7)5: + 3  X 7 ( 5 K 2  -52k + 2  X 7)5: 

- 5(  K - 2'K + 22 x 3 K )] 

p p  x 1 1  x 13s: - 3  x 7 x  l l ( 3 K  -2 x 5 ) S :  + 3  x 7 ( 3  x 5 K 2 - 3  x 5 x 7 K  + 101)s; 

- (5 x 7 K 3  - 5 x 7 x 1 1  K 2  + 2 x 32 x 7'K - 2' X 32 x S)S,] 

2[3* x 5 x 1 1  x 13s: - 2 x 3  x 7 x  1 1  x 13(2K -32)S t  

+ 3 x 5 x 7 x 1 l ( 2  x 3K2-23  x 7 K  +34)S': 
- 2  x 3(2 x 3 x 5 x 7 K 3 - 3  x 5 ~7 x 2 9 K 2 + 2  ~ 7 '  x lOlK -2 X 3 ~ 7 6 1 ) s :  
+ 5  x 7 ( K 4 -  2' x 5 K 3  +22 x 33K2-24 x 3'K)] 

Z2[5 x 1 1  x 13 x 17s: - 2 ~ 3  ~5 x 1 1  x 13(2 x 3 K  - 5  x7)S :  (2s -9 ) !  
(2s)!  

+ 3  x 7 x  1 1  x 13(2 X ~ K ~ - ~ ' X ~ ~ K  + 5  ~ 2 9 ) s :  
- 2  x 5 x 1 l ( 2  x 3 x 7 K 3 - 3  x 7  x 3 7 K 2 + 2 x 3 ' x 7 K  - 2 x  5 ~ 2 6 3 ) s :  
+3(3 x 5  ~ 7 K ~ - 2 ~ x 5  x 7  x 19K3+2' x 7  ~ 6 7 3 K ' - 2 ~ x  3 x 761K + 2 6 ~  3 x 5 X7)S,] 

2'[11 x 13 x 17 x 19S:"-3 x 5  x 11 x 13 x 17(3K -2 x 11)s: (2s - l o ) !  
(2 s ) !  

+ 3 x 7 x 1 1  x 13(2 x 3 x 5K2-2  x 32 x 5'K + 1 1  X 109)s: 
- 5  x 1 1  x 13(2 x 3 x 7 K 3 - 2 x  3 x 7 ~ 2 3 K ~ + 3 ~  x 7  X29K -23 X 1 1  ~ 7 1 ) s :  
+ 3 x 1 1 ( 3 x 5 x 7 K 4 - 2 x 5 x 7 x 4 7 K 3  
+Z4 x 5  x 7  x53K2-2' x 3  x S 2 x 2 6 3 K  +24 x 3  x 1 1  ~ 6 1 ) s :  
- 3 2 ~ 7 ( K S - 2 3 x 5 K 4 + 2 2 x  1 2 7 K 3 - 2 8 ~ 3 2 K 2 + 2 6 X 3 2 X 5 K ) ]  

products of the same order. Indeed, these products satisfy the relation (77); e.g. with J, 
(79) J,{S:S$:} = i(p{S~S&-'S~+' } - ~{s : s~+' s : - '  }). 

In order to establish this result one considers the generating function 

(80) 
I !  

~ , ( x , ~ , z ) = ( x S , + y S , + r S , ) ' =  - x u y %  '{S;s$:}* 
uJ3.y a ! P !  r! 
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(81) 
I !  

x u’y @‘z Y ’ (  y{s;’s 8’ s, ?‘+I } - z{s;’s&’+ s:’}) = i  
U’,@’.,’ a ’ ! P ’ ! y ’ !  

a ’ + @ ’ + y  = I  

which yields the announced result. One should notice that the monomials in S, which 
occur in equation (76) are trivially of the symmetrised type. It can now be directly 
checked that the expression 

{ S ; - ~ P ’ S ; - W S : - ~ ~ ‘  } 
1 

p ’ ! 4 ’ ! r ’ ! ( p  - 2 p ’ ) ! ( q  - 2q’ ) ! ( r  - 2r’)! 
X (82) 

fulfils equation (77) and coincides with the expression (76) for p = 4 = 0. Therefore, it is 
the result we are looking for. These are given in table 5 for I s 6 and in table 6 for 

Table 5. Cartesian components (P,,),, in terms of symmetrised products of spin operators, 
equations (78) and (82). Only the components with p s q s r  are listed, the other 
components being obtained from permutations over the indices x ,  y and z. 

0 0 0 0  

1 0 0 1  

2 0 0 2  
0 1 1  

3 0 0 3  
0 1 2  
1 1 1  

4 0 0 4  
0 1 3  
0 2 2  
1 1 2  

5 0 0 5  
0 1 4  
0 2 3  
1 1 3  
1 2 2  

6 0 0 6  
0 1 5  
0 2 4  
1 1 4  
0 3 3  
1 2 3  
2 2 2  
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s s 2 .  Using the initial notation of Cartesian components, i.e. (Pst)il,..i,, one has, for 
instance, 

Pso = 1 ( 8 3 ~ )  

(Psl)i = a:iSi (83b)  

( P ~ ~ ) ~ ~  = a ~ z { S i S i } + a , ' z l s i j  ( 8 3 ~ )  

(Ps3)ijk = a:3{sis$&)+$ai3 (sisi& +S$ik + s k & j ) -  ( 8 3 4  

These expressions can be simplified thanks to the commutation relations of spin 
operators, cf tables 6-8, and, for example, 

(pS3),,k = ; ~ S : ( S ~ S , S ~  + S ~ S , S ~ ) - : ( U S :  -2a,'3)(~is,k +Sk~ij)+$(aP3 +a , l3 )~ ,6 i& (84) 

which is different from the formula given by Keaton (1971) for s =; ( a ! / 2 3  =y, 
a 3 1 2 3  = -7; its expression is not completely symmetrical with respect to the three 
Cartesian indices). It should be noticed that the relation (56b)  allows us to modify the 
expressions in terms of the spin operators. 

10 

1 41 

3.3. Properties of Cartesian and spherical components of tensors PSI 

As for the Tsl to which they are proportional, the tensors P,I are traceless on contraction 
of any pair of Cartesian indices, i.e. from equation (20)  

( p s l ) p ' + ~  q'r' + ( f ' s / ) p ' q ' + ~  re+  (Pst)p'q'r*+2 = 0 p ' + q ' +  r '=  1 - 2. ( 8 5 )  

It must be possible to check this property using the general formula (82), equation 
(56b) ,  and taking care of the symmetrised character of products of spin operators. We 
only check equation (85) for the special cases given in table 5 .  

The normalisation factor nsl can be obtained up to a sign from the orthogonality 
relations of the Tchebichef polynomials, equation ( A 3 ) ,  and of the operators (T,,),!,, 
equation (66c) .  Its sign then follows from the relative sign between any same matrix 
element of (PSI),!, and ( Tsf),!,. However, this normalisation factor arises directly from the 
relation ( A M )  between the Tchebichef polynomial tl(p + s) and the Clebsch-Gordan 
coefficient (ssp -pIlO). On comparing the values of the matrix element (spl(Psl)oot/sp) 
which arises from equations (50), (73)  and (76)  one finds 

(2s + 1)(21+ 1)2' 1'2 

nsl = ( 2 s ) ! 1 ! (  (2s - 1 ) ! ( 2 s  + I  + 1)!(21)! > .  
The values of this factor are listed in table 6 fors  s 2.  Since nsf is real and the ( T ' I ) ~ .  are 
Hermitian operators, equation (68) ,  we get 

(PSI) i q r  = ( P S I  ) p q r  (87)  

as also follows from the general formula (82) .  From equations (69 ) ,  (71)  and (86 )  any 
operator A in ds can be written as 

As for the (Tsf)wn the 
Hermitian operators which span 4. 

thus form an overcomplete system of non-orthogonal 
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As for the irreducible Cartesian tensor Tsr, the expression for the spherical 
components of PSI in terms of its Cartesian components is not unique and can be taken 
as the minimal expansion (24): 

Expressing the (Ps,)M, by equation (82), one then obtains the (Ps,),f, in terms of the spin 
operators. This result for 1 s 4  can be obtained by replacing in table 1 the monomials 
x P y 4 z r  by the (Ps,)Mr listed in table 5 .  One thereby finds the expressions given in table 6 
for s G 2 and in table 7 for 1 ~ 4 .  In terms of the spherical components (P,,),!,, the 

Table 7. Spherical components (P,,);, equation (89). in terms of spin operators. 

0 

321 
0 

i 2  
i1 

0 

+3 
i 2  
i1 

0 

*4 
*3 

322 

i1 

0 

properties (66a-d) read 

(PSd = 1 
(Ps,): = c-z'(-l)m(Ps,)!m 

Hence, the (PSI) :  form an orthogonal basis of operators in terms of which any operator 
in ds can be expressed according to equation ( 9 0 d ) .  

Instead of the bases of operators ( TSI): or (P,,),!,, one can consider the other basis of 
operators {A:ro, I = 0 , .  . . ,2s ,  m = 1, . . . , I, E = *l} defined by equation (52), 
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adding a subscript s, or the proportional operators 

Using equation (906), their Hermitian conjugate reads 

c:; = C - Z i ( - l ) m E C : l m r  

and equation (90c) yields the orthogonality relation 

2 ( I  - m)! ( I+  m)! (2s  - 1)!(2s + I  + l ) !  
S c c ' S i d m m ,  (21 + 1)[(2s)!I!I2 

Tr(C:i,,,C:i'i,) = - 
1 + a m 0  

for all non-negative m and m'. Therefore, any operator A in ds can be written as 

(21 + l ) ( r ! y  
X C I i m  Tr(AC:,',) (1 - m ) ! ( I +  m)! (2s  - I)!(2s + I + l ) !  (94) 

where E = 1 if m = 0. It follows from equation (53) that the C:I, read, in terms of the 
Cartesian components (Psr)w,, 

The two equations above provide us with a minimal expansion of any operator A in ds 
in terms of Cartesian component operators. Namely, any A is then expressed in terms 
of (2s + 1)' linearly independent linear combinations of the (Psi)w,. Actually, instead of 
the C:imr one usually considers the quantities 

Dfl", = BKz'-" (96)  

where the BK are defined by equations (546-e) and = means that each monomial 
x P y q z r  here stands for (Psl)pqr. The Ctlm and the D:lm are then related by equation 
(54a)  replacing Af, and BKz'-" by Gm and DsFim, respectively. Using tables 3-5, the 
expressions for the D:lm in terms of the spin operators are listed in table 8 for 1 S 4. The 
operators {Dtlo, DIlm; I = 0, . . . ,2s, m = 1 ,  . . . , I ,  E = * l }  are Hermitian, 

DIA = D:/m, (97)  

and form another orthogonal basis of ds in terms of which any operator A reads as the 
minimal expansion 

2s (21 + 1 ) ( 1 ! y  1 
I = O  ( 2 s - I ) ! ( 2 s + I + l ) !  ( I -2n) ! (1+2n)!  

A = [(2s)!I2 1 
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Table 8. Operators D L ,  equation (96), in terms of spin operators. The factor a : ~  is the 
coefficient of the highest degree symmetrised monomial {S,"S:S:] in which follows 
from equation ( A l l ) .  

0 0 1  

1 1 1  

- 1  
0 1  

2 2 1  

- 1  
1 1  

- 1  
0 1  

3 3 1  

-1  
2 1  

- 1  
1 1  

- 1  
0 1  

3 
s(2s - 1 )  

5 
s ( 2 s - l ) ( s - l )  

35 
s(2s - 1)(2s -2)(2s - 3) 

4 4 1  

-1  
3 1  

- 1  
2 1  

- 1  
1 1  

- 1  

1 

Using the simplified notation 

A iqr = TdA 1 
and table 3, we get explicitly for 1 s 4  
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9 ~ ( 2 s  - l)(s - 1)(2s - 3) 
(s + 1)(2s + 3)(s + 2)(2s + 5) 

+ {&(PS4)400 - 6(Ps4)220 + (p~4)0401 

4. Conclusion 

In practice, any operator in ds is expanded either in terms of the spherical component 
operators ( Tsl)A, equation (66d), or in terms of the Cartesian component operators 
(Psr)wr, equation (88). The first expansion is over an orthogonal basis of operators and 
the only coefficient, i.e. (2s + l), arises from the choice of unity as ( Tso)E. On the other 
hand, the second expansion is over a superfluous set of non-orthogonal operators and, 
furthermore, the coefficients have a non-trivial s and 1 dependence. Taking into 
account the relation (85)  between the (Psr)wr, one can extract from this overcomplete 
set of operators different bases defined by linear combinations of the (Psr)wr. A simple 
way to do this is given by the minimal expansion (98), and more explicitly by equation 
(100). This third expansion of any operator is closely related to the first one discussed 
above, but the coefficients are even more complicated than in the second expansion 
since they are all different. 

The Cartesian component operators and the spherical component operators for 
c = 1 coincide with the operators adopted in the Madison convention (1971) for the 
description of nuclear reactions involving spin-? and spin-1 particles. For this type of 
application and with the choice of coordinate system specified in the convention quoted 
above, the parity conservation leads us to consider density operators p which are 
symmetrical with respect to the xOr plane. One then has 

(101a) 

(101b) 

p f i  = Tr[pD;,] = 0 if (-I)'-, z E .  (101c) 

To study the azimuthal dependence of a reaction one needs to know how the three types 
of basis operators depend upon the change of coordinate systems, i.e. a rotation of Q 

about the z axis. Let us specify by the index Q the quantities defined with respect to the 
rotated coordinate system. For the first and the third bases one has 

"(T,/):= e-imq(Tsl)A (102a) 

qD:lm = (cos mcp)D:r, +(sin mcp)gt,Dst, (1026) 
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where the value of g h  = -iL'/fR follows from equations (546-e): 

For the Cartesian component operators the expressions are more complicated, since 
they are given by 

q(Ps,)w, = ( x  cos 4p + y sin q ) ' ( - x  sin 4p + y cos 4p)'z' (1 04) 

where = means that x " y q z r  stands for (Psr)w,. It should be noticed that in the first and 
third cases the different values of m are not mixed under this rotation, while in the 
second case all values of p' and 4' such that p + q = p' + q' are generated. From all these 
considerations, the use of the spherical component operators ( Tsr)A appears to be the 
most convenient one. 

As far as the use of the spin operators is concerned, we have given general formulae 
for the considered basis operators in terms of symmetrised products, equation (78). 
However, the expressions for these latter products involve many terms. 
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Appendix. Tchebichef's polynomials of a discrete variable 

The Tchebichef polynomials t n ( x ) ,  as defined by Bateman (1953), are the orthogonal 
polynomials with the weight function 1 of the discrete variable x = 0, 1, . . . , N - 1. One 
here considers the case 

N = 2 s + 1  n = l  x = p + s  p = s , s - 1 ,  . . . ,  -s. 

Let us then sum up the properties of the polynomials t l(w +s) in which we are 
interested. 

Definition : 

Orthogonality relation : 
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Difference equation : 

( p  + S  + 2 ) ( p  - S  + 1)A2tt(p + ~ ) + [ 2 p  +2-1(1+ l ) ]A t / (p  +s)- I(I + 1)tI(p + s )  = 0. 

044) 
Recurrence formula ; 

( I  + l)ttc1(p +s ) -2 (21+  1)ptt(p +SI+ 1[(2s + u2 -121tt-1(P +SI = 0 

(A51 l = l , 2  ,...) 2s -1 .  

Symmetry property. Parity in p : 

t i ( @  + s ) =  ( - l y t / ( - p  +s).  

Relation with the generalised hypergeometric function 3Fz: 

Relation with a Clebsch-Gordan coefficient. From the equation above and equation 
(22) of Varshalovich et a1 (1975) one has 

Special values ; 

(0 I odd 

(2s)!  
tt(2s) = - 

(2s - I ) ! .  

Coefficient of the highest power in p ; 

Special cases. The tf ( p  + s) are listed in table 4 for I S 10. 

References 

Bateman H 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) p 223 
Coope J A R, Snider R F and McCourt F R 1965 J. Chem. Phys. 43 2269-75 
Edmonds A R 1968 Angular Momentum in Quantum Mechanics revised edn (Princeton, NJ: Princeton 

E l b a  E and Meyer J 1978 Rapport LYCEN 7821 
Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic) p 24 

University Press) p 69  



Irreducible Cartesian tensors 1461 

Goldfarb L J B 1958 Nucl. Phys. 7 62242 
Keaton P W 1971 Proc. Int. Symp. on Polarization Phenomena of Nucleons, Madison 1970 ed H H Barschall 

Lakin W 1955 Phys. Rev. 98 13944 
A.ia&saa Qoawz&icd9WW:m. [nt. Sy-p .  em Pe!&r&.* Pkrnomsnwf E.Wco:s, Madikon M70 ~d I! !I 

Normand J M 1980 A Lie Group: Rotations in Quanfum Mechanics (Amsterdam: North-Holland) p 177 
Normand J M and Raynal J 1981 Proc. Inf. Conf. on Polarization Phenomena in Nuclear Physics, Santa Fe 

1980 ed G G Ohlsen, R E Brown, N Jarmie, W W McNaughton and G M Hale (New York: American 
Institute of Physics) pp 997-9 

and W Haeberli (Madison: The University of Wisconsin Press) pp 422-4 

~ 

Barschall and W Haeberli (Madison: The University of Wisconsin Press) pp xxv-xxiv 

Ohlsen G G 1972 Rep. Prog. Phys. 35 717-801 
Raynal J 1964 mesis Orsay, p 13 (also 1965 Argonne Nafional Laboratory Trans. 258 14) 
- 1972 Note CEA-N-1529, p 11 
Stone A J 1975 Mol. Phys. 29 1461-71 
- 1976 J. Phys. A:  Math. Gen. 9 485-97 
Varshalovich D A, Moskaliev A N and Kersonskii V K 1975 Quantum Theory of Angular Momenta (in 

Russian) (Leningrad: Nauka) p 205 


