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Relations between Cartesian and spherical components of
irreducible Cartesian tensors

Jean-Marie Normand and Jacques Raynal
Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette, Cedex, France

Received 16 October 1981

Abstract. Explicit formulae which relate Cartesian and spherical components of irreducible
Cartesian tensors are derived. For the description of spin-s particles, explicit formulae for
the Cartesian tensors and the spherical tensors are given in terms of symmetrised products
of spin operators.

1. Introduction

For a long time, nuclear reactions have dealt with polarised spin-% and spin-1 particles.
For these studies, the Madison convention (1971) recommends the use of two kinds of
operators which are either spherical tensors (Lakin 1955) or Cartesian tensors (Gold-
farb 1958). With the construction of heavy-ion accelerators, polarised nuclei with
higher spin are now available for nuclear reactions. The aim of this work is to extend the
two previous kinds of operators to any spin and to study the relations between them.

Section 2 is devoted to the general relations between the Cartesian and the spherical
components in the special case of irreducible Cartesian tensors. After a brief recall in
§2.1 of the general Cartesian-spherical transformation, the irreducible Cartesian
tensors are defined in § 2.2 and the properties of their components are given. The
explicit formulae which relate their Cartesian and spherical components are derived in
§§2.3 and 2.4.

Section 3 is an application of the previous one to operators belonging to the algebra
generated by the spin operators S,, S, and S, associated with the description of a spin-s
particle. The definition and some properties of bases of operators which are Cartesian
or spherical components of irreducible Cartesian tensors are recalled in §3.1. An
explicit expression for these basis operators in terms of symmetrised products of spin
operators is derived in § 3.2. Taking into account the usual normalisations, we give in
§ 3.3 the expressions for any operator either in terms of a basis of spherical component
operators or in terms of an overcomplete set of Cartesian component operators. The
relation between these latter operators can be taken into account to express any
operator in terms of a minimum set of linear combinations of Cartesian component
operators. A simple way to do this is explained.

Finally, in the conclusion we discuss the use of these three kinds of expansions for
any operator in the description of nuclear reactions. It is then shown that the spherical
component operators are the easiest to handle.

Large tables of coefficients are given for applications, although these coefficients are
easy to obtain from explicit formulae except for the Tchebichef polynomials for which
we used a computer.
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1438 J-M Normand and J Raynal
2. Cartesian-spherical transformations for irreducible Cartesian tensors

2.1. General formulation of Cartesian-spherical transformations

With respect to the three-dimensional rotation group, a tensor (Normand 1980)
T = T" of order ! and with each of its / ranks equal to one is defined by 3' components
which belong to an associative but not necessarily commutative algebra over the
complex field C. The Cartesian components (T, ;;ix =x, ¥, z) and the spherical
components (T,i.;",‘,,,; m; =1, 0, —1) are characterised by their law of transformation:

. I st
R =(R})eSO@3) RTi.u= Y Ty Il Rik (1a)
i k=1

o
LB FE

!

Toim= L Toi'mi [ Dmim (R) (16)
mi,..., m} =

where @'(R) is the irreducible rotation matrix for spin one. Since, up to an

equivalence, @' is the only unitary and irreducible three-dimensional representation of

SO(3), the Cartesian and spherical components are related by

!
T'l‘l;H: z Til‘..i, I-I (ikllmk> (2[1)
(ST i k=1
!
Ti.w= % Toim L1 Amlic) (2b)
my,.., m; k=1

where the matrix ({(i|1m)) is a multiple of a unitary matrix:
1 o -1
-1/¥2 0 1/V2\«x

(illmy)=c| -i/¥2 0 =-i/v2]y ceC. 3
0 1 0 |z
As is usual, we will assume from now on that
c?=x1 i.e. c==zx1 or £i; (4)

e.g. c =1 in the Madison convention (1971), Edmonds (1968) and Normand and
Raynal (1981), ¢ =i in Fano and Racah (1959) and ¢ = ix in Stone (1975, 1976). The
matrix ({({|1m)) is then unitary:

F[1m)y* = A mli). (5)
A further property reads
(iltmy* = c (= 1)™(i[1 - m). (6)

Therefore, if the Cartesian components are real quantities or Hermitian operators, one
gets

- - { e
T " = P =) T (7)
Any tensor T ! of order / greater than one can be decomposed into irreducible

tensors T4V of integer rank j, 0 <j </, and characterised by a coupling scheme
specified by /—2 intermediate couplings A =(A; k=1,...,/-2) and their order
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symbolically denoted by a. One then defines a transformation
T2l = 5 T i ifAasjm) (8)
where
oA
(1. dilAa, jmy= §  Crahi b k[ll (i 1), 9)

the coupling coefficients C), ,1,;",1., J being products of / — 1 Clebsch-Gordan coefficients.
From the orthogonality relations of Clebsch-Gordan coefficients, the inverse trans-
formation of equation (8) reads, for a given a,

Tio= Y T YOa, jmliy. .. i) (10)

Ajom

where

{
ey jmlis . i)= L Crami'm [T (Imlie). (11)

My
From equation (5) the transformation above is unitary:
(il .‘.illAa,jm)*=(/\a,jmli1...il). (12)

A further property follows from equation (6) and the symmetry of Clebsch-Gordan
coefficients under the change of sign of all indices m, . and m, namely

Gy. . hlAa, jmy* =72 (=)' LAy f - m). (13)
Thus, under the same conditions as for equation (7), one finds

i1 Laa) feors _ c—2l(‘1)l—i+mT(l...LAa)lr'm (14)

2.2. Irreducible Cartesian tensors

Attention is now focused on the couplings to the highest value / of j, and the following is
shown:

(i) The coefficients (i, . .. ij|Aa, Im) are independent of the coupling scheme Aa, and
invariant under any permutation of the indices i,. Hence, they will henceforth be
denoted by

(pgrlim)={i, ... i|Aa, Im) (13)
where the indices x, y and z occur, respectively, p, g and r timesini, ... i (p+q+r=1).
(ii) The contraction of any two Cartesian indices i, and i, leads to
2 ivenda iy iAa, Im)Sy,,

ig,ip
=(p'+2q'r|lm)+(p'q' +2 r'llm)+(p'q'r' +2|Im)=0 (16)
where p'+q'+r'=1-2.
These properties are based on the independence of the coupling coefficients with j

equal to the highest value / with respect to the coupling scheme. Indeed, for two orders
of couplings one has a priori

Cram, mim=2 Cram mmR(Aa, A'a’, Im) (17)
2
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where the recoupling coefficients R(Aa, A'a’, Im) are multiples of 3(/ —1)j symbols. It
follows from the Wigner-Eckart theorem that these latter coefficients are independent
of m; hence, setting m = yields R{Aa, A'a’, Im) =1 as a product of 2(/ — 1) Clebsch-
Gordan coefficients all equal to one. Moreover, due to the coupling to the highest value
/, the sum over the intermediate couplings A’ in (17) contains only one term (QED). One
can then use the step-by-step coupling scheme considered by Stone (1975), and apply
his results to the special coupling to the highest value /. Let us nevertheless give a
straightforward proof of properties (i) and (ii). The C,, ,‘,.1,1,,,1. are invariant under any
permutation of the indices m,, since this corresponds to a special change of the coupling
scheme. Property (i) then arises from equation (9). Choosing in equation (16) a
coupling scheme where the ath and the bth spins one are coupled together necessarily to
two, one finds, using equations (5) and (6),

Z 6,»aib (ntat,,.11|lm)0C Z (1lmamb]ZpL)(iaIlma)(ib|lmb>5iaih

fadip iasibsMa,mp

=c"WV3 Y (11mams|2u )11 mam,|00) (18)

ma,my

where only the relevant terms are explicitly written. Property (ii) then follows from the
orthogonality relations of Clebsch-Gordan coefficients.

An explicit expression and some properties of coefficients {pqr|lm) are derived
below in § 2.4.

By definition, an irreducible Cartesian tensor, also said to be in natural form (Coope
et al 1965), is a tensor of order ! with [ ranks one, such that all its irreducible tensors
vanish except the one with the highest rank /, denoted from now on by (T})". The
previously derived properties of (pqr|im) imply that such a tensor T; is completely
symmetrical and traceless: namely, from equations (9), (12) and (15), its Cartesian
components (T});, ; are invariant under any permutation of indices i, ... i, and they
will henceforth be denoted by

(Tpar = (T mIm| pqr) prq+r=1 (19)
Furthermore, equation (16) yields
(T‘I)p'+2q'r'+(7‘l)p'q'+2r'+(T‘l)p'q'r'—fz=0 P’+q'+7’=1_2y (20)

which means that 7T; is traceless on contraction of any pair of Cartesian indices.
Actually, T, is characterised by the two properties above (Coope et al 1965). An
irreducible Cartesian tensor T, has 2/+1 linearly independent components (T,),i,.
Therefore, its 3' Cartesian components are not independent for / =2: on the one hand
they are completely symmetrical and thus there are

m=3I+1(+2) (21)

components (7}),,; and on the other hand they have to satisfy the n,_, relations (20).
One thus recovers the proper number of linearly independent components for

21+ 1=n—n;_3. (22)

2.3, Spherical components in terms of the Cartesian ones

Since n; > 2!+ 1 for | =2, the expression for the spherical components of T, in terms of
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its Cartesian components arising from equation (8), i.e.

n
(T)m= 3 W(T:)W(pqulm% (23)
p.q,r qgir.
p+g+r=1i

is not unique. The extra factor /!/p!q!r! is the number of sequences of Cartesian
indices 7, . . . i; which correspond to given values of p, q and r. Taking advantage of this
freedom, one now derives a minimal expansion for the spherical components

(Tom= L (Tpq(parlim) (24)

p.a.r
p+q+r=1
where minimal means that each (7)., is expressed in terms of the smallest number of
Cartesian components, and the (pqr|lm) are coefficients determined below.
Being completely symmetrical, the components (7}),, behave under the rotation
group as the monomials x’y“z". From equations (2a) and (3) one thus has

4 21 1/2
m) Yulp, 9, 0)  (25)

where =~ means that a monomial x”y?z" stands for (7})p- and ¥, (p, 9, ¢) is a solid
harmonics with

(Ti=Ti" z(%(x +iy)>l =c'u(

x=psin ¥ cos ¢ y =p sin ¥ sin ¢ z=pcos (26)

The components (T,),ﬁ1 are obtained by a repeated action of the infinitesimal generator
J_ of the representation considered, which amounts to applying

0 d

_=(x—iy)—— 27
=G 22 ) @7)

on the right-hand side of equation (25), yielding

472t \'?

)~ ‘1!(——————) Yim(p, 3, ¢). 28
(Tm=c 21D im (P> B, @) (28)

In terms of monomials the constraints (20) read
x2+y*+z2=0. (29)

Taking into account this relation in the expression for #,,,, the minimum number of

monomials x”y“z" is then obtained by replacing the two monomials x> + y2 by the single
2 .

one —z°. Since

x*+y*=p’—p’cos’ § —22=—p?cos’ ¥, (30)
the above procedure amounts to taking in %, only the coefficient of the highest degree
in cos 9. One thereby finds

20! 1/2 )
2’<1—r(n)!)<z+m>z) [F(x +iy)]™z' 7™ 1)

(cf table 1 for / =4) and finally

Q! 1/2
2’(1—m)!(1+m)!)

(T»szc’(

|m]
(Tl)lxlm|=cl( CIVED) (ii)“(!ml)(ﬂ)lml-uu1—|m| (32a)
“

w=0
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Table 1. Spherical components (T)),% of an irreducible Cartesian tensor T; in terms of its
Cartesian components (T}),q,, here denoted by x”y?z’, equation (31). The coefficient ¢
occurs in the relation between the (T,),L and the solid harmonics, equation (28).

1/2

2
! “(Tm =1!(————->
m < “="\@i+nan
0 0 1 1
1 £1 Fhix £iy) %
0 z
2 +2 $(x2£2ixy — y?) V&
+1 F(xz xiyz)
0 ngz
3 £3 Fabs(x® £ 3ixly - 3xy? Fiy?) Vi
+2 ‘/'il(xzz +2ixyz —y*2)
£1 #=VB(x22 2iyz?)
0 \/%23
4 +4 Hx*xdixdy —6x%y T dixy’ +y%) ENAA
+3 FhH(x 2 2 3ixyz = 3xy’z Fiy’z)
+2 ?(xzzztﬁxyzz—yzzz)
+1 ’F\/‘zl(xftiyz’)
0 %\/125 z*

— Jd_1ym p:q (21)! )Uz(P"'Q)'
(parli2lm =" (5= Srm) arag SeveimBum (320)
The same results can be obtained from
d+m)t N2,
(ﬂ)#ﬂ-d‘(m) T x +iy), (33)

where, using equation (27), /=™ (x +i y)' is computed recursively, replacing at each step
(x +iy)(x —iy) by —z? to take into account equation (29).

It follows from equation (14), or directly from equation (325), that the coefficients
(pqr|lm) satisfy

(pgrlim)*=c ™2 (=1)" (pqr|l — m), (34)
and a further property reads

(pqrll —m) = (=1)"(pgr|im). (35)

2.4. Cartesian components in terms of the spherical ones

r

The analogy between the monomials x°y%z" (p+gq+r=1) and the Cartesian
components (7}),q provides us with a method of computing the coefficients {Im|pqr)
which occur in equation (19). The expansion of x°y?z” in terms of monomials
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(x +iy)’(x —iy)'z" reads

1 rxs (-1)p!q!
2779 k%o z,: JHk=Pip—k+)Ng—N!
Replacing (x +iy)(x —iy) by —z%to take into account equation (29), and using equation
(31), it becomes

(T2) par = (—1)* (x +iy)" (x —iy)<2". (36)

= m)+ m)t 2
2u ’("2)1)(!“")) (T (37)

(e +ig) 4 (x miy) 2 = e =17

where

m=p+q-2k. (38)
Therefore, we obtain
(Im|pqr) ={pqr|im)*

_ ! ! 1/2 1—{~1 p+q+m
= C-liq(zr—p-qg_m)_) C(p,q, m)+6l,p+q+r (39)

@n!
with
-1)Yplqg!
C(p’q’m)=;i!(p-j)![%(p+qim))li/%![%(q—p-m)ﬂ‘i]!
_ q!
" Bp+q+m)iGg-p-m)]!
XoFi[~p, —H(p+q+m);3q-p—-m)+1;-1]. (40)

The value of the quantity C(p, q, m) above is given in table 2 for constant p+g <8.
Let us now derive some properties of coefficients (/m| pqr).

Symmetry relations. From equation (38) these coefficients vanish for p + g +m odd.
Furthermore, the symmetries of hypergeometric series imply

C(p,q,m)=(-1)""""""2C(q, p, m)=(-1)C(p, g, =m) (41)
which yields

(Im|pgr) = (=1)'"""™"%% " (Im |qpr) = (= 1)°(I — m| pqr). (42)
In particular, these relations induce

(Im|ppry=0 if p+3m odd (43)

(10| pgr)=0 if p odd. (44)
Furthermore, it is recalled that the coefficients (Im|pqr) satisfy equation (13), i.e.

(Im|pgry* = c*'(=1)"(I = m| pqr), (45)

as can be checked directly from equation (39).

Generating function. Setting

x+iy=u x—iy=—-1/u z=1 (46)
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Table 2. Cartesian components (T}),q, Of an irreducible Cartesian tensor T; in terms of the
Al equation (51). The factor in front of each Af, of this table is equal to C(p, g, m),
equation (40).

¢ (=172 (T par

h~)
<~
~

o

! Ao

-1 -AR
Al

AL+2A0

1-3 —AR +3A4
Ah-AL
-AG -AY
AL +34]
/-4 Al —4AL+6A)
—Al+2A0
Als—2Alo
—A -24%
Al +4AL+6A),
-5  —AR+5A5 ~10A7!
Als-3AL+24]
—AG +AR +2AL
Als+Al;-2A}
~Ad 345 —2A1!
Als+5AL,+104),

-6 Al -6AlL+15A4),-20A)
~Ald +4A7} —5A%
Als~2Al-AlL+4A]
—Al +345
Als+2Al,—AL-4Aj
—Al -4A -547
Ali+6Al,+154L +204),

I-7 AR +7A5 —21A5 +3547)
AL-5AL+9A},-5A},
AR 4345 - AR 54y
Al -Als-3AL+3A}
—AL —A+3A0 +347
AL +34L+AL-5A
~Ap -5A -9AL ~SAY
AL+74L+214}+354),

/-8 Als—8Al+28Al,—56AL,+70A),
—AlR +6A —14A +14A7
Al —dA+4A), +4A), - 104,
—AR 424K +2A -6AR
Al -4Al,+64),
—AR —2A +2AL +6A7;
Al +dAl +4A) —4A}, -10A),
—AR —6A —14AT —14AT;)
Alg+8Ajs+28A}+56A1, +70A,

O~ N WAL O—~LNWELNANN O~ RNWHRERUVA O NWREWKN O—NWAE OFHNDOW O O
0 VA UNHEWNPRL,O JTAUMBABWUNELO OOUVAEWNFRFO BEWNA,O AWNMFEO WN O N—2O —O O




Irreducible Cartesian tensors 1445

in xPy“z" to take into account the relation (29), one gets, on comparing with equations
(36) and (39), a generating function

o= i) e ety
pt+a U

R = w72 mipa) @7

p+q+m even

with p+q+r=1[ always. This generating function allows us to check the unitary
character of the Cartesian-spherical transformation in the special case considered.
Indeed, one establishes

X (p+qg+r)! £ n_ o\ (uu)™
p.q.z,=o p'q!r! Foor (1) E per () Igo mg'—l(l—m)!(l‘i-m)! (48)
which yields
L oialr ,<1mlpqr><1m |Pgr)* = Smm- (49)
par P:q:r
p+q+r=I
Special value. 1t arises from equations (39) and (40) that
!
{Im|ool’y = c—l(\/’Z—)'—I'—-Sula,,,o. (50)

v

Taking advantage of equation (42), the expression (19) for the Cartesian
components (T}),,, in terms of the spherical components (T)).. can be rewritten as

o 1 p+a

(Tl =¢S5z 3 Clp.amAR" (51)
p+q+m even

where

€
Alm_

1 (2‘(1—m)!(1+m)! 172
T 1468,0

2! ) [Tkt em) (52)

with € = £1 and as always / = p + g +r. These expressions for (T;),,, are listed in table 2
for p+q=<8.

Since Ay vanishes, there are 2/ + 1 linearly independent objects {A,o, Al,m=
1,..., 1, & =1} which can be considered instead of the 2/ + 1 spherical components
(T,),,, Using the minimal expansion (24) for the (7)., the Af, read, in terms of the
Cartesian components (T})pq, =x"y%z",

m 1+e(-1)"** _
AL =c'(-n" ):0 i“(:)—f—:(;-g—):—x"'_“y“z' m m=0. (53)

w=

Actually, instead of the A}, one usually considers proportional quantities normalised in
such a way that the coeﬂ‘icnent of the monomial with the highest degree in x, i.e.
forgetting z, x™ or x™ 'y, be one, except if there exists a monomial y™ and no
monomial x™ in which case the coefficient of y™ is taken equal to one. Casting the
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dependence upon z aside, one then defines polynomials B, in x and y, distinguishing
four cases:

Al ~c'feBLz' ™" (54a)
1 2 1 4 W28\ 2n-2, 2,
fo=Trsm Bh=3 (1) (2u>" v n=0,1,... (54b)
- . - 1 "ot 14 2n n—-2v— v+
£5) = 4ni Bii=5- L (-1 (2V+1)x2 ol 0 (54c)

. n+ n 4 v, 2n+1 n—2y v+
fiar =2(-1"" Bl =(-1" ¥ (-1 (2V+1>x2 Bl 01, (54d)
- - n +1 =20 2w
fone1=—2 Bit=Y (—1)"(2';V )xz" 1m2vy? n=0,1,
v=0

(54¢)

These polynomials B, are listed in table 3 for / <6.

Table 3. Polynomials B, in x and y which occur in the minimal expansion of the Af,, in
terms of the spherical components (T}),,,, here denoted by xPy?z', equations (54b~¢).

m 3 B;,
0 1 1
1 1 y
-1 x
2 1 ,\'2—y2
-1 xy
3 1 y3—3x2y
-1 x3=3xy?
4 1 x*—6x?yi4y?
~1 xay—xy3
5 1 y - 10x2y3+5x4y
-1 x5 -10x3y? +5xy*
6 1 x6—15x4y2+15x2y‘—y6
-1 Sy -y ayt

3. Tensors built with spin operators

3.1. Description of a spin-s particle

To describe a spin-s particle one considers the algebra &, over the complex field of
operators A, functions of the fundamental observables S; (i = x, y, z) which satisfy the
commutation relations of angular momenta:

[Si, S/] = iEiijk- (55)

These operators act in the (2s + 1)-dimensional space ¥, spanned by the orthonormal
basis (su); u =s,s—1,..., —s) which forms a standard basis of the representation of
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the rotation group on ;:
(S, £iS,)sp) =V(s Fu)(s £ p+1)|sp £1) S.lsu)=wmlsu)  (56a)
S2+82+82=5(s+11. (56b)

The operators A in &, transform under the rotation group according to the adjoint
representation, the infinitesimal generators of which are defined by

JA=[S, Al (57)

The algebra &, is spanned by the (25 + 1)? uncoupled generalised projection operators
|sp)(sp'|, which are orthogonal in the following way:

Trl|su Xsu'|(IswXsv') ") = 8,8, (58)

Therefore, any operator A in &/, especially the density operator associated with the
description of any physical state, can be expressed as
A=Y |suXsp'| TrlA(suXsu'D"1= T lsuXsp|Alsie Ysp'|. (59)
e g
Since we are interested in the behaviour of operators under the rotation group, it is

convenient to define irreducible tensor operators which are proportional to coupled
generalised projection operators (Raynal 1964, 1972):

t _1ys—a R B 1=0,1,..‘,23
Tim=aq E,“( 17 (ssp — p'|Im)|sp Xspe'| meliml, ... 1 (60a)
s—p' 1 '
fsu)(su'] = (~1) IZa—1<ssu - u'lim) T, (60b)

where the a,; are non-zero complex normalisation coefficients to be chosen. In terms of
the notations for the tensorial character specified by Normand (1980), one has, from
equations (11.12) and (11.13),

|sweY(su'| = P (61a)
Tom = ag(—1)%c,P*N. (61b)

The operators T, span the algebra &, and it follows from the orthogonality relation of
Clebsch-Gordan coefficients that they are also orthogonal according to

Tr(TsnIthr:r = |(151|281{'6mm‘. (62)

Any operator A in &, e.g. a density operator, then reads
1 +
A= IZ Ts,i,l}—lf Tr(AT,). (63)
,m sl
One should notice that

1+ asl* m !

Tsm = ("1) Ts—m- (64)
Qs

As is usual (Madison convention 1971), one from now on chooses

ag=c'V2s+1 (65)

where the factor ¢ is identical to the one considered previously, equation {4). One then
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has
To=1 (66a)
T =c 2 (=1)"Tsm (66b)
THTemTom ) = (25 + 1)8y8mm’ (66¢)
— 1 { 1+
= 25 +1 & Tsm Tr(ATsm . (66d)

Applying the results of § 2.2, one defines from the T, an irreducible Cartesian
tensor Ty, the only non-zero irreducible spherical components of which are the T,.. The
Cartesian components {Ty;),,. are then defined in terms of the basis of operators ( Toh)
by equation (19), or, using equation (60a), in terms of the other basis of s/, (|su)(su']),
i.e.

(T)par = 2. Tem(lm | pqr) (67a)

=c'V2s+1 Y fsuXsw'[(=1)* (s — u'lim)Im|pgr).  (67b)

maup’

It follows from equations (45) and (665) that the operators (T),, are Hermitian:
(Tsl);qr:' (’Tsl)pqr- (68)

Using the orthogonality relation (49) of coefficients {/m|pqr) and equation (66d), one
shows that any operator A in &, e.g. a density operator, can be written as

1 1

=317 “;N 51.p+q+rm(nl)mr Tr[A(Ty) e . (69)

Hence, the operators (7)., Which are not linearly independent since they satisfy
equation (20), form an overcomplete set of operators which span &/,. Indeed, one can
check, using equation (21), that they are in number

f n =25 +1)(2s +2)(2s +3) (70)
1=0

which is greater than the dimension (25 + 1)2 of o, for s > %, the equality occurring for
s =0and3. Itshould be noted that the operators (Ty),, are non-orthogonal in the trace
meaning. The expression of (TS,),L in terms of the (7;),,, is not unique and can be taken
as the minimal expansion (24) derived in § 2.3.

3.2. Expression of tensors in terms of spin operators

Our aim now is to express the previously defined irreducible Cartesian tensors Ty in
terms of products of the spin operators S,, S, and S,. Actually, one usually considers a
multiple Py, of Ty,

1
Psl = dgy (71)
Ny
with the normalisation condition
(Ps)ooi]ss) = [ss), (72)

from which n,, is determined later in § 3.3.
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One first derives the expression of the Cartesian component (Py;)go; in terms of the
spin operators. It arises from equations (71), (675) and (50) that

(l0joo)

sl

(Pyoot =c'V2s +1

¥ (1) *(ssp — ] 10)|sp s (73)

Hence, (Py)oo: is diagonal in the standard basis (|su )) and can therefore be expressed in
terms of S, only:

(Pa)oot = fsl(sz ). (74)

Furthermore, the diagonal matrix elements (su|(P.)oo:/su) are proportional to the
Clebsch-Gordan coefficients {ssu — . |/0), the orthogonality relation of which yields

3 fa(u)far(u)oc 8y, (75)

The f, () are thus orthogonal polynomials of the discrete variable u =s,5—1,..., —s.
They are multiples of the Tchebichef polynomials (Bateman 1953) #(u +5s), the
relevant properties of which are summed up in the appendix. It follows from the
normalisation condition (72) and equation (A10) that

(/2] _ 2s -1
{(Pa)ooi = z a:lstz 2 =(S—)"f1(5z +5) (76)
2o 2s)!

where [1/2}=1/2 or ({—1)/2 according to whether / is even or odd. The (Py)oo; are
listed in table 4 for / < 10. Ohlsen (1972) gave similar results without pointing out the
relation with the Tchebichef polynomials.

Let us come to the (Py),, With p+q # 0. It has been noted in § 2.3 that the (T}) .
behave under the rotation group as the monomials x°y?z", and likewise for the
proportional quantities (Py),,. Hence, the action on (Py), of the infinitesimal
generators J; of the representation considered, here the adjoint one, cf equation (57),
amounts to applying the infinitesimal generators j; on x”y“z". For instance, one gets
with J,

i a a3 i
]x Ps , == ( — ) P,A," o p,a-1_r+l _ __p q+1_r-1
(Pst) pq na\Zay Vaz )X -—nsl(qx y' 2 Py
=i[q(Psf)pq—l r+1_r(Psl)pq+l r—l]s (77)

and similar equations hold with J, and J,. It is not convenient to express the (Py),,, in
terms of ordered products S:S2S7, since the commutator of a spin operator with such a
product of order a + 8 + v generates ordered products of all orders <a + 8 +v. Thisis
why we consider the completely symmetrical products of spin operators defined by

acBarn__ @!1B!Y!
{SxSySZ}--—-*—(a+3+y)!ZSi,...S,-G,B,,, (78)

the sum being over the (a +8 + y)!/a! B! y! distinct permutations where S,, S, and S,
occur, respectively, a, 8 and vy times. The commutator of a spin operator with a
symmetrised product of order a + 8 + y can then be expressed in terms of symmetrised
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Table 4. Cartesian components (P, )oo: in terms of the spin operator S, equation (76). The
#; are the Tchebichef polynomials of a discrete variable, equation (Al).

[i/2) -
1 (Pidoor = 2. atst =B 6 s K =sts+ )
=0 (2s)
0 1
1
1 -8,
5
2 ! (382 -K)
s(2s-1) :
1
3 —_———[58? -(3K - 1)S,
s(2s—1)(s—l)[5s BK-1S.]
1
4 5% 78 -5(2x3K-5)82+3K(K -2
DT hEs Ty X785 T 3@x3K -9 +3K(K ~2))
25— 5)!
5 %—S—ilz’[s?wsf—5x7(21<—3)s§+(3x51<2—2x521<+22x3)s,]
(25_6)! 2 6 4 2 2 2
6 o 2[3xTx 1188 —3x5x7(3K - NSt +3xT(SK?-5°K +2x7)S;
s)!
—S5(K3-2°K?+2¥x3K))
257!
7 (—(52—)—‘)—23[3x11><13SZ—3x7xll(3K~2x5)Sf+3x7(3x5K2-3x5x7K+101)Sf
§):
_(5xTK3-5xTx11K2+2x32x 72K -22x 32 x5)§, ]
25~ 8)!
8 fz i) 2[3*x5x11x138% —2x3xTx 11 x13(2K —37)S%
5)
F3x5xTx112%x3K2-22x 7K +3%8}
~2x3@2X3x5xTK =3x5xTx29K2+2x7*x 101K —~2x3x761)S?
+5xT(K-22x 5K +22x 32K =24 x3%K)]
25 —9)!
9 ((32 )') 2[5x11x13x178% ~2x3x5x 11x13(2x3K -5%7)S]
§)
F3xTx11x132%x3K1 -2 x32K +5 %298}
CIxS5x 112 x3xTK3-3xTx37K?+2x3°x 7K -2 x5 x263)8%
+33XSXTK —22x5xTx 19K>+23x Tx6T3K? - 2*x3x 761K +2°x3x5x 7S, ]
25— 10)!
10 (—“:2—)’0—)—22[11x13x17x1931"—3><5><11x13><17(3K—-2x11)5§
s5)

+3xTX11x13(2x3x5K2-2%33x 5K +11 x 109)87
—5x11x13(2x3xTK3=2x3xTx23K?+3*xTx29K -2>x 11 x 71)$}
+3x11(3x5xTK*-2x5xTx47K>
+24%SxTXS53K2-2Tx3x57x 263K +2°x3x 11 x61)§?

C3x K -2 x5K O+ 22 127K - 28 x 32 K2+ 2°x 3P x 5K)]

products of the same order. Indeed, these products satisfy the relation (77); e.g. with J,

JAS3S88T} =i(B{S3S5 ST} — y{SIST IS Y. (79)
In order to establish this result one considers the generating function
I
Fix,y, 2)=(xS+yS,+28)' = ¥ ———x"y®27{S:S7S1}. (80)
apy alBly!

a+B+y=1
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One then has

I )
LE(x,y,2)= ¥  ———x"yP2"[S, {Si57S7))
@B,y a'B'
a+B+y=1{

-1
i Y (xS +yS, +25.)°(yS. — 28,) (xS, + yS, + 28,)' <!
k=0

n

vy @B

a’'+B'+y' =1

— e x "y T(y{SISEST - 2{8TSEHISTY (81)

—

which yields the announced result. One should notice that the monomials in S, which
occur in equation (76) are trivially of the symmetrised type. It can now be directly
checked that the expression

[1/2] [p/211q/2](r/2]
(I=2X)Alplg!r!
(Psl)pqr= Z a:l p q 2 5,\p+q+,

AZo 1! P20 q'=0 r'=0
1
p''\q'!r'(p—2p g —29")(r—2r")!

fulfils equation (77) and coincides with the expression (76) for p = g = 0. Therefore, it is
the result we are looking for. These (Py),, are givenin table S for / <6 and in table 6 for

{§2P a7} (82)

Table 8. Cartesian components (Py),,, in terms of symmetrised products of spin operators,
equations (78) and (82). Only the components with p<gq=<r are listed, the other
components being obtained from permutations over the indices x, y and z.

l 14 q r (Psl)pqr
0 0 0 0 1
1 0 0 1 al,S,
2 0 0 2 a8t +als1
0 1 1 al,(8,8.}
3 0 0 3 a%82 +al,s,
0 1 2 al3{5,52}+3als8,
1 1 1 a%15,5,8.}
4 0 0 4 a%S? +alsS?+al1
0 1 3 a&{syszhéa:,{sysz}
0o 2 2 a)a{S;S7)+4ala (ST +87)+3alil
1 1 2 s4{5552}+6as4{55}
5 0 0 5 ss +a 553+a355
0 1 4 sS{ss }+sass(5y5 }'*'sasss
0o 2 3 ,s{s s3 }‘*‘10“:5 3{$3S.}+S; ) +1als,
1 1 3 55{555 }+10ax5{sss}
1 22 aDS.SIS% )+ fea s (5,57} +S.S2 )+ fsalsS,
6 0 0 6 65 +a,55 +a,(,s +a,61
0 1 S 56{5 5 }+Basé{s 5 }+3ass{5 S}
o 2 4 ,6{323‘}+15a,6(6<s sz}+s +ka (287 + 87)+tak 1
L1 4 alds,s,Stedalels,S,ST+ taliSs,)
0 3 3 ase{S,S;}+ sase({s S, }+{55 })+sas6{35}
1 23 a06{S. 5382} +15a16(3{5.528.} +{5.51) + 1502 {S.S, }
2 2 2 ak{SiSiSi}+isals <{s§'55}+{SE53>+{5353}>+£a36<si +8T+5h+1sal1
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s =2. Using the initial notation of Cartesian components, i.e. (Py);,. i, one has, for
instance,

Pyo=1 (83a)
(Po1)i = aa; (83b)
(P2)y = as:{S:S;} +a;218; (83¢)
(Pes)ik = @3 {S:S:Si} + 33 (88 + Si8u + Siby). (83d)

These expressions can be simplified thanks to the commutation relations of spin
operators, cf tables 68, and, for example,

(Ps3)ijk = tals (S:S:S« + SiS,S:) —&ad —2als Y(SiBu +Siby;) + YNad +ais N (84)

which is different from the formula given by Keaton (1971) for s =3 (a2,23 =4
al;23 =—%; its expression is not completely symmetrical with respect to the three
Cartesian indices). It should be noticed that the relation (565) allows us to modify the
expressions in terms of the spin operators.

3.3. Properties of Cartesian and spherical components of tensors Py

As for the T;; to which they are proportional, the tensors Py; are traceless on contraction
of any pair of Cartesian indices, i.e. from equation (20)

(Psl)p’+2 q‘r’+ (Psl)p'q'+2 r'+(Psl)p'q'r'+2 =0 P"*‘Q"" f' = 1_2 (85)

It must be possible to check this property using the general formula (82), equation
(56b), and taking care of the symmetrised character of products of spin operators. We
only check equation (85) for the special cases given in table 5.

The normalisation factor ng can be obtained up to a sign from the orthogonality
relations of the Tchebichef polynomials, equation (A3), and of the operators (TS,),L,
equation (66c¢). Its sign then follows from the relative sign between any same matrix
element of (P,,),f1 and (T;),.. However, this normalisation factor arises directly from the
relation (A8b) between the Tchebichef polynomial #(u +s) and the Clebsch-Gordan
coefficient {ssu. — 1 |/0). On comparing the values of the matrix element (s |(Ps;)oo:|sp )
which arises from equations (50), (73) and (76) one finds

(2s+1)21+1)2! )‘/2

na= @ (G e

(86)

The values of this factor are listed in table 6 for s <2. Since ny, is real and the (7). are
Hermitian operators, equation (68), we get

(Psl);qr= (Psl)pqr (87)

as also follows from the general formula (82). From equations (69), (71) and (86) any
operator A in &, can be written as

_ , QI+12'an?
A=[@s)] ,_,,z_;,_,‘s"”*‘”’p!q!r!(zs—1)!(2s+1+1)!(21)

As for the (Ty)pen the (Py)ye thus form an overcomplete system of non-orthogonal
Hermitian operators which span &,.

|(Psl)pqr Tr[A(Psl)pqr]- (88)



Irreducible Cartesian tensors 1455

As for the irreducible Cartesian tensor T, the expression for the spherical
components of Py in terms of its Cartesian components is not unique and can be taken
as the minimal expansion (24):

Pm= Y (Pa)par(pgriim). (89)

par
p+q+r=1
Expressing the (Py) - by equation (82), one then obtains the (Py).) in terms of the spin
operators. This result for / <4 can be obtained by replacing in table 1 the monomials
xFy?z" by the (Py),q listed in table S. One thereby finds the expressions given in table 6
for s =<2 and in table 7 for /<4. In terms of the spherical components (Ps,),f‘, the

Table 7. Spherical components (P,,),f., equation (89), in terms of spin operators.

! m o TP,

0 0 1

1 £1  Fhal (S, xiS,)
0 a% s,

2 £2 2a,z[szil(ss +5,5,)-82]
1 xza,z[ss +S$ +i(S,S, +S.5,)]
0 V3a%S? +al,1)

3 £3  Fzpas[S:-35,5,S, -8, Fi(S)-35,S,5, - 5,)]
£2 éa;[sss sssﬂ(sss«»sssn
1 *‘\/2{0;3555 +3(053 +as3)s il[a,JSSS +3(as3 +a53 )S, 1}
O \/Z(asfis +as3s)

4 +4 Aa,.,[s‘+s“—3(s2s2+s S2)+2(S2+82)-382 £2i(S35, + 5,53 - 5,53 - 538,)]

+3 xva,.,{s S, +S s’—3<sssz+s $.5.)+2(8,S,+8S.S,)
:l[s S, +8 53-3(5 535 +528.8, )+2<ss +5.5,))}

22 Ya%, (282 + 8257 - §? 252 ~828%)~ 3(5a,4 ,4)(53—53)
:*:1[2(154 (s s Sz +S Sysx 3(5‘1:4 sd)(s sy+sysx)]}

1 x%fé{a,.(ss +535,) - 2<a,, a14)(8:S; +5.5.)
il[asa(s Ss+s3s ) 2(as4 sA)(Sysz""sty)]}

0 l\/z(a,,,S‘-Hz,‘,52+as.,l)

properties (66a-d) read
(Piolo=1 (90a)
(P)m = ¢ (=1)"(P)im (906)
(2s = D!2s+ 1+ 112D

{ '+ _
Tr[(Psl)m(PsI’)m’] - (2l+ 1)21[(25)'1']2 511'6mm' (90C)
20+ 1)2'(1)? N
A=) T o Tl e (P THA P ) (90a)

Hence, the (P, form an orthogonal basis of operators in terms of which any operator
in &, can be expressed according to equation (90d).

Instead of the bases of operators (Ti) or (Py).., one can consider the other basis of
operators {ALo, ASm; [=0,...,2s, m=1,...,1,e==1} defined by equation (52),
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adding a subscript s, or the proportional operators

1 1 2'(l—m)!(l+m)!)”2 , ,
m g Aim = mt & (Pa)im]. (91
Ca ng 1+6m0( 2 [(Pa)m+e(Pa)-m). (91)
Using equation (905), their Hermitian conjugate reads
im=¢ 2 (=1)"eCom, 92)

and equation (90c¢) yields the orthogonality relation

e e v 2 (U=m)U+m)!2s-D!2s+1+1)!
Tr(CslmCsI'm' —1+6m0 (21+1)[(25)'1']2 5:5 5!1 amm (93)

for all non-negative m and m’. Therefore, any operator A in &/, can be written as

A=[2s)T i" i Y
I=Cm=0e=x1

14 8,0
2

y QI+ 1)()?
U=mNI+m)2s—)12s +1+1)!

slm Tr(A Cslm (94)

where ¢ =1 if m =0. It follows from equation (53) that the C5,, read, in terms of the
Cartesian components (Py)pq,,

slm—‘c( n~” i ()lilgi;—T):"_w

u=0

(Psl)m-u.u.l—m' (95)

The two equations above provide us with a minimal expansion of any operator A in &/
in terms of Cartesian component operators. Namely, any A is then expressed in terms
of (25 + 1)* linearly independent linear combinations of the (Py),q Actually, instead of
the C.., one usually considers the quantities

Dim=~Biz'™" (96)

where the B;, are defined by equations (54b-¢) and = means that each monomial
x"y%z" here stands for (Py),q. The Cg and the Dy, are then related by equation
(54a) replacing A}, and B,z f=m by Cum and Dy, respectively. Using tables 3-5, the
expressions for the Dy, in terms of the spin operators are listed in table 8 for / <4. The
operators {DYo,Dim: 1=0,...,25, m=1,...,1 & ==+1} are Hermitian,

D3 = Diim, (97)

and form another orthogonal basis of &, in terms of which any operator A reads as the
minimal expansion

_ 2 QI+DU? (@ 2 1
A= Y s+ 1T D 20 17 65g (T=2m)10 7 2]

X [Dm,, Tr(AD}p,) +4n°D 33, Tr(AD 35,)]
[

1—
+ Z 2

a0 (=2n-DI{+2n+1)!

X[DYanes Tr(ADYzne1) + Dby Tr(AD:,ém)]}. (98)
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Table 8. Operators D¢, equation (96), in terms of spin operators. The factor a% is the
coefficient of the highest degree symmetrised monomial {§757S} in (P;),, which follows
from equation (A11).

o _@s=D12D)

1
! m € ay = —Dm; K=s(s+1)

@s)NUN? ag
0 0 1 1 1
1 1 1 ! s
5 y
- S,
0 1 S.
3 2 2
2 2 1 s2-§
s(2s-1) Y
-1 {8.5,} =3(S5.S, +§,S,)
1 1 {S,S.}=3(5,S. +8.S,)
-1 8.5} = 35S, +8.8.)
0 1 S:
5
3 3 1 oD 83 -3{s25,} =82 -355,5, -,
-1 82 -3(s,852}=83-35,5.5,- 8,
2 1 {825,1-1{825,} = 5,S.S, - §,5.S,
-1 {sxsysz} = f(sxsysz + stvsx)
1 1 {8,821 -15(3K ~ 1)S, = 5.8, S, ~ (K -2)S,
-1 {§,53} - 153K - 1)S, = §,5.5, - 5K - 2)S,
0 1 S:
35 4 202 4
4 4 1 st -6{s28%)+ 5?
s(2s-1(2s-2)2s-3) « ~6(S.S)}+ S,
-1 {835,}-{5.83}
3001 (sis, }—3{525532}
-1 {55522}_ 3{%52"52}1 2 2
2 1 {stz}_{s Sz}_4—2(6K_5)(Sx~SV)
-1 8,5,87) - a3(6K =5)(S.S,}
1 1 {8,831 - (6K - 5){S,S.}
-1 {5,53}—37(61< ~5)4S,S.}
0 1 S:

Using the simplified notation
A;qr = Tr[A (Psl)pqr] (99)
and table 3, we get explicitly for I/ <4

3s s s s
= 25+1 (TI‘ A +ST1[(PSI)100AIOO +(Psl)OIOA'AOIO +(Psl)001A001]

5s(2s—1)
(s+1D(2s+3)
+%[(Ps2)110A§10 +(Ps2)101A %01 + (Ps2)o11 40111+ (Ps2)0024 502}

TsRs—1)(s—1)
(s+1D2s+3)s+2)

{3{(P:2)200 — (Ps2)020](A300 =~ Ad20)

{16[(Ps3)003 — 3(Ps3)120)(Ad0s — 3A320)
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+16[(P;3)030 = 3(Ps2)210)(Ad30 = 3A310) + 3[(Py3)201 — (Ps3)021](A 201
— A1)+ P Al + %[(Ps3)102A;02 + (P;s3)012A40121+ (Ps3)003A 003}

9s2s—1)(s —1)2s-3)
(s+1D(2s+3)(s+2)25+5)

X (Adoo —6A320 + Adso) + 55[(Pea)aso — (Pra)130)(A 310 — Als0)
+35[(Pea)oss = 3(Pea)211)(Ads1 —34311)

+35[(Psa)sor = 3(Psa)121](Aor —3A4121)

+3{(Psa)202 — (Pra)o22)(A302 — Ad22)

+3(Po) 1124512 + [(Pea)103A 303 + (Prg)or3Ad13]

{35[(P.a) 400 — 6(Psa)220 + (Py4)oao)

2s
+(P54)004A<S)o4}+;5 - ) (100)

4. Conclusion

In practice, any operator in & is expanded either in terms of the spherical component
operators (T, equation (66d), or in terms of the Cartesian component operators
{(Ps1) pqr, €quation (88). The first expansion is over an orthogonal basis of operators and
the only coefficient, i.e. (25 + 1), arises from the choice of unity as (T,0)s. On the other
hand, the second expansion is over a superfluous set of non-orthogonal operators and,
furthermore, the coefficients have a non-trivial s and / dependence. Taking into
account the relation (85) between the (Py),,, One can extract from this overcomplete
set of operators different bases defined by linear combinations of the (Py;)pq- A simple
way to do this is given by the minimal expansion (98), and more explicitly by equation
(100). This third expansion of any operator is closely related to the first one discussed
above, but the coefficients are even more complicated than in the second expansion
since they are all different.

The Cartesian component operators and the spherical component operators for
¢ =1 coincide with the operators adopted in the Madison convention (1971) for the
description of nuclear reactions involving spin-; and spin-1 particles. For this type of
application and with the choice of coordinate system specified in the convention quoted
above, the parity conservation leads us to consider density operators p which are
symmetrical with respect to the x0z plane. One then has

pim =Ttlp(T)]=(-1)"pi., (101a)
piar =Tto(Ty)par]=0 if p+r odd (1015)
o =Ti[pDm]=0 if (-1)7"" #e. (101¢)

To study the azimuthal dependence of a reaction one needs to know how the three types
of basis operators depend upon the change of coordinate systems, i.e. a rotation of ¢
about the z axis. Let us specify by the index ¢ the quantities defined with respect to the
rotated coordinate system. For the first and the third bases one has

(Tdm=e""(Ty)m (102a)
°Dsim = (c0s m@)D g + (sin m@) g mD sim (1025)
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where the value of g, = —if../f follows from equations (54b-¢):

n+1

_ 1 _ n
g3 =2n gon =—— E3ns1 =(=1) ganer =(=1)". (103)

2n

For the Cartesian component operators the expressions are more complicated, since
they are given by

®(Pyt)pqr =(x cos @ +y sin ¢)°(—x sin ¢ +y cos ¢)?2” (104)

where = means that x”yz" stands for (Py),, It should be noticed that in the first and
third cases the different values of m are not mixed under this rotation, while in the
second case all values of p’ and g’ such that p + g = p'+ ¢’ are generated. From all these
considerations, the use of the spherical component operators (Ta)s appears to be the
most convenient one.

As far as the use of the spin operators is concerned, we have given general formulae
for the considered basis operators in terms of symmetrised products, equation (78).
However, the expressions for these latter products involve many terms.
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Appendix. Tchebichef’s polynomials of a discrete variable

The Tchebichef polynomials ¢,(x), as defined by Bateman (1953), are the orthogonal
polynomials with the weight function 1 of the discrete variablex =0, 1,..., N~1.One
here considers the case

N=2s+1 n=| xX=pu+s uw=ss-1,...,-s

Let us then sum up the properties of the polynomials #(u +s) in which we are
interested.

Definition

t,(u+s)=1!A’[(“l+s)("_j‘l)] 1=0,1,...,2s (A1)

where
Af(u)=f(u+1)—f(n) A" () = A[A™f(w)]. (A2)

Orthogonality relation

S flu ) +s)= 21!

= QI+ 1D)@2s=1" (A3)
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Difference equation:

(+s+2)(w-s+ DA +s)+[2u +2- 10+ DAL +5) = I+ D)t (p +5) =0.

(Ad)

Recurrence formula:
I+ Dt +8) =21+ Dut(u+5)+[Q2s + 1) =Pl (u +5)=0

1=1,2,...,2s—-1. (A5)
Symmetry property. Parity in u:

1 +s)=(-1)'t(—u +s). (A6)
Relation with the generalised hypergeometric function 3F:

2s)!
W+ ) = (=1 =L Byl = =5, 14151, 253 1), (A7)
(2s -1

Relation with a Clebsch-Gordan coefficient. From the equation above and equation
(22) of Varshalovich et al (1975) one has

2s+1+ 1)1 2
(‘22’%(‘2%) (IsOpe sy (A8a)

2s+1+1)1 V2
(—2(1_:)727)7)_» (s — | 10). (A8b)

(e +) = (-1
=0

Special values:

(—1)"21!( ! )(s+l/2> { even

His)= 1727\ 112 (A9)
0 ! odd
(29!
1(2s)= 25— (A10)
Coefficient of the highest power in w.:
20
wl+5) =2+ O, (A11)

(n

Special cases. The t;(u + s) are listed in table 4 for / < 10.
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