Relations between Cartesian and spherical components of irreducible Cartesian tensors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 151437
(http://iopscience.iop.org/0305-4470/15/5/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:55

Please note that terms and conditions apply.

Relations between Cartesian and spherical components of irreducible Cartesian tensors

Jean-Marie Normand and Jacques Raynal
Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette, Cedex, France

Received 16 October 1981

Abstract

Explicit formulae which relate Cartesian and spherical components of irreducible Cartesian tensors are derived. For the description of spin-s particles, explicit formulae for the Cartesian tensors and the spherical tensors are given in terms of symmetrised products of spin operators.

1. Introduction

For a long time, nuclear reactions have dealt with polarised spin- $\frac{1}{2}$ and spin-1 particles. For these studies, the Madison convention (1971) recommends the use of two kinds of operators which are either spherical tensors (Lakin 1955) or Cartesian tensors (Goldfarb 1958). With the construction of heavy-ion accelerators, polarised nuclei with higher spin are now available for nuclear reactions. The aim of this work is to extend the two previous kinds of operators to any spin and to study the relations between them.

Section 2 is devoted to the general relations between the Cartesian and the spherical components in the special case of irreducible Cartesian tensors. After a brief recall in $\S 2.1$ of the general Cartesian-spherical transformation, the irreducible Cartesian tensors are defined in $\S 2.2$ and the properties of their components are given. The explicit formulae which relate their Cartesian and spherical components are derived in §§ 2.3 and 2.4 .

Section 3 is an application of the previous one to operators belonging to the algebra generated by the spin operators S_{x}, S_{y} and S_{z} associated with the description of a spin- s particle. The definition and some properties of bases of operators which are Cartesian or spherical components of irreducible Cartesian tensors are recalled in §3.1. An explicit expression for these basis operators in terms of symmetrised products of spin operators is derived in § 3.2. Taking into account the usual normalisations, we give in § 3.3 the expressions for any operator either in terms of a basis of spherical component operators or in terms of an overcomplete set of Cartesian component operators. The relation between these latter operators can be taken into account to express any operator in terms of a minimum set of linear combinations of Cartesian component operators. A simple way to do this is explained.

Finally, in the conclusion we discuss the use of these three kinds of expansions for any operator in the description of nuclear reactions. It is then shown that the spherical component operators are the easiest to handle.

Large tables of coefficients are given for applications, although these coefficients are easy to obtain from explicit formulae except for the Tchebichef polynomials for which we used a computer.

2. Cartesian-spherical transformations for irreducible Cartesian tensors

2.1. General formulation of Cartesian-spherical transformations

With respect to the three-dimensional rotation group, a tensor (Normand 1980) $T=T^{1 \ldots 1}$ of order l and with each of its l ranks equal to one is defined by 3^{l} components which belong to an associative but not necessarily commutative algebra over the complex field \mathbb{C}. The Cartesian components ($T_{i_{1} \ldots i l} ; i_{k}=x, y, z$) and the spherical components ($T_{m_{1} m_{l}}^{1 \ldots 1} ; m_{k}=1,0,-1$) are characterised by their law of transformation:

$$
\begin{align*}
& R=\left(R_{i}^{i^{\prime}}\right) \in \operatorname{SO}(3) \quad{ }^{R} T_{i_{1} \ldots i_{i}}=\sum_{i_{1}, \ldots, i_{i}} T_{i_{1}^{\prime} \ldots i_{i}} \prod_{k=1}^{l} R_{i_{k}}^{i_{k}^{\prime}} \tag{1a}\\
& { }^{R} T_{m_{1} m_{l}}^{1 \ldots, 1}=\sum_{m i, \ldots, m_{i}^{\prime}} T_{m_{i} m_{i}^{\prime}}^{1, \ldots} \prod_{k=1}^{1} \mathscr{D}_{m_{k} m_{k}}^{1}(R) \tag{1b}
\end{align*}
$$

where $\mathscr{D}^{1}(R)$ is the irreducible rotation matrix for spin one. Since, up to an equivalence, \mathscr{D}^{1} is the only unitary and irreducible three-dimensional representation of SO(3), the Cartesian and spherical components are related by

$$
\begin{align*}
& T_{m_{1} m_{1}}^{1 \ldots 1}=\sum_{i_{1}, \ldots, i_{1}} T_{i_{1} \ldots i_{l}} \prod_{k=1}^{\prime}\left\langle i_{k} \mid 1 m_{k}\right\rangle \tag{2a}\\
& T_{i_{1} \ldots i_{l}}=\sum_{m_{1}, \ldots, m_{1}} T_{m_{1}}^{1 \ldots 1} \prod_{k=1}^{l}\left\langle 1 m_{k} \mid i_{k}\right\rangle \tag{2b}
\end{align*}
$$

where the matrix $(\langle i \mid 1 m\rangle)$ is a multiple of a unitary matrix:

$$
(\langle i \mid 1 m\rangle)=c\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 / \sqrt{ } 2 & 0 & 1 / \sqrt{ } 2 \tag{3}\\
-\mathrm{i} / \sqrt{ } 2 & 0 & -\mathrm{i} / \sqrt{ } 2 \\
0 & 1 & 0
\end{array}\right) y z \begin{aligned}
& z
\end{aligned} \quad c \in \mathbb{C} .
$$

As is usual, we will assume from now on that

$$
\begin{equation*}
c^{2}= \pm 1 \quad \text { i.e. } c= \pm 1 \text { or } \pm i \tag{4}
\end{equation*}
$$

e.g. $c=1$ in the Madison convention (1971), Edmonds (1968) and Normand and Raynal (1981), $c=\mathrm{i}$ in Fano and Racah (1959) and $c=\mathrm{i} \kappa$ in Stone $(1975,1976)$. The matrix $(\langle i \mid 1 m\rangle)$ is then unitary:

$$
\begin{equation*}
\langle i \mid 1 m\rangle^{*}=\langle 1 m \mid i\rangle . \tag{5}
\end{equation*}
$$

A further property reads

$$
\begin{equation*}
\langle i \mid 1 m\rangle^{*}=c^{-2}(-1)^{m}\langle i \mid 1-m\rangle \tag{6}
\end{equation*}
$$

Therefore, if the Cartesian components are real quantities or Hermitian operators, one gets

$$
\begin{equation*}
T_{m_{1} m_{l}}^{1 \ldots \ldots+\text { or }+}=c^{-2 l}(-1)^{\Sigma_{k-1}^{l} m_{k}} T_{-m_{1}-m_{l}}^{1} \ldots \tag{7}
\end{equation*}
$$

Any tensor $T^{1 \ldots 1}$ of order l greater than one can be decomposed into irreducible tensors $T^{\{1 \ldots 1, \lambda \alpha\}}$ of integer rank $j, 0 \leqslant j \leqslant l$, and characterised by a coupling scheme specified by $l-2$ intermediate couplings $\lambda=\left(\lambda_{k} ; k=1, \ldots, l-2\right)$ and their order
symbolically denoted by α. One then defines a transformation

$$
\begin{equation*}
T^{\{1 \ldots 1, \lambda \alpha\}} \underset{m}{ }=\sum_{i_{1}, \ldots, i_{i}} T_{i_{1} \ldots i_{i}}\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, j m\right\rangle \tag{8}
\end{equation*}
$$

where
the coupling coefficients $C_{\lambda \alpha m_{1}}^{1 \ldots, m_{1}, m}$ being products of $l-1$ Clebsch-Gordan coefficients. From the orthogonality relations of Clebsch-Gordan coefficients, the inverse transformation of equation (8) reads, for a given α,

$$
\begin{equation*}
T_{i_{1} \ldots, i_{1}}=\sum_{\lambda, j, m} T_{m}^{\{1 \ldots 1, \lambda \alpha\}}{ }_{m}\left(\lambda \alpha, j m\left|i_{1} \ldots i_{l}\right\rangle\right. \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\lambda \alpha, j m \mid i_{1} \ldots i_{l}\right\rangle=\sum_{m_{1}, \ldots, m_{l}} C_{\lambda \alpha m_{1} m_{l}}^{1, \ldots} \prod_{k=1}^{l}\left\langle 1 m_{k} \mid i_{k}\right\rangle . \tag{11}
\end{equation*}
$$

From equation (5) the transformation above is unitary:

$$
\begin{equation*}
\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, j m\right\rangle^{*}=\left\langle\lambda \alpha, j m \mid i_{1} \ldots i_{l}\right\rangle . \tag{12}
\end{equation*}
$$

A further property follows from equation (6) and the symmetry of Clebsch-Gordan coefficients under the change of sign of all indices m_{k}, μ_{k} and m, namely

$$
\begin{equation*}
\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, j m\right\rangle^{*}=c^{-2 l}(-1)^{l-j+m}\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, j-m\right\rangle . \tag{13}
\end{equation*}
$$

Thus, under the same conditions as for equation (7), one finds

$$
\begin{equation*}
T^{[1 \ldots 1, \lambda \alpha\} i * o r+}=c_{m}^{-2 l}(-1)^{i-i+m} T^{\{1 \ldots 1, \lambda \alpha\} j} . \tag{14}
\end{equation*}
$$

2.2. Irreducible Cartesian tensors

Attention is now focused on the couplings to the highest value l of j, and the following is shown:
(i) The coefficients $\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, l m\right\rangle$ are independent of the coupling scheme $\lambda \alpha$, and invariant under any permutation of the indices i_{k}. Hence, they will henceforth be denoted by

$$
\begin{equation*}
\langle p q r \mid l m\rangle=\left\langle i_{1} \ldots i_{l} \mid \lambda \alpha, l m\right\rangle \tag{15}
\end{equation*}
$$

where the indices x, y and z occur, respectively, p, q and r times in $i_{1} \ldots i_{l}(p+q+r=l)$.
(ii) The contraction of any two Cartesian indices i_{a} and i_{b} leads to

$$
\begin{align*}
& \sum_{i_{a}, i_{b}}\left\langle i_{1} \ldots i_{a} \ldots i_{b} \ldots i_{l} \mid \lambda \alpha, l m\right\rangle \delta_{i a i_{b}} \\
&=\left\langle p^{\prime}+2 q^{\prime} r^{\prime} \mid l m\right\rangle+\left\langle p^{\prime} q^{\prime}+2 r^{\prime} \mid l m\right\rangle+\left\langle p^{\prime} q^{\prime} r^{\prime}+2 \mid l m\right\rangle=0 \tag{16}
\end{align*}
$$

where $p^{\prime}+q^{\prime}+r^{\prime}=l-2$.
These properties are based on the independence of the coupling coefficients with j equal to the highest value l with respect to the coupling scheme. Indeed, for two orders of couplings one has a priori

$$
\begin{equation*}
C_{\lambda \alpha m_{1} m_{l} m}^{1 \ldots 1}=\sum_{\lambda^{\prime}} C_{\lambda^{\prime} \alpha^{\prime} m_{1}}^{1 \ldots m_{1}, \ldots} 11 R\left(\lambda \alpha, \lambda^{\prime} \alpha^{\prime}, l m\right) \tag{17}
\end{equation*}
$$

where the recoupling coefficients $R\left(\lambda \alpha, \lambda^{\prime} \alpha^{\prime}, l m\right)$ are multiples of $3(l-1) j$ symbols. It follows from the Wigner-Eckart theorem that these latter coefficients are independent of m; hence, setting $m=l$ yields $R\left(\lambda \alpha, \lambda^{\prime} \alpha^{\prime}, l m\right)=1$ as a product of $2(l-1)$ ClebschGordan coefficients all equal to one. Moreover, due to the coupling to the highest value l, the sum over the intermediate couplings λ^{\prime} in (17) contains only one term (OED). One can then use the step-by-step coupling scheme considered by Stone (1975), and apply his results to the special coupling to the highest value l. Let us nevertheless give a straightforward proof of properties (i) and (ii). The $C_{\lambda \alpha m_{1}}^{1 \ldots 1}{ }_{m_{1}}^{1}$, are invariant under any permutation of the indices m_{k}, since this corresponds to a special change of the coupling scheme. Property (i) then arises from equation (9). Choosing in equation (16) a coupling scheme where the a th and the b th spins one are coupled together necessarily to two, one finds, using equations (5) and (6),

$$
\begin{gather*}
\sum_{i_{a}, i_{b}} \delta_{i_{a} i_{b}}\left\langle i_{1} \ldots i_{a} \ldots i_{b} \ldots i_{l} \mid l m\right\rangle \propto \sum_{i_{a}, i_{b}, m_{a}, m_{b}}\left\langle 11 m_{a} m_{b} \mid 2 \mu\right\rangle\left\langle i_{a} \mid 1 m_{a}\right\rangle\left\langle i_{b} \mid 1 m_{b}\right\rangle \delta_{i_{a} i_{b}} \\
=c^{-2} \sqrt{3} \sum_{m_{a}, m_{b}}\left\langle 11 m_{a} m_{b} \mid 2 \mu\right\rangle\left\langle 11 m_{a} m_{b} \mid 00\right\rangle \tag{18}
\end{gather*}
$$

where only the relevant terms are explicitly written. Property (ii) then follows from the orthogonality relations of Clebsch-Gordan coefficients.

An explicit expression and some properties of coefficients $\langle p q r \mid l m\rangle$ are derived below in § 2.4 .

By definition, an irreducible Cartesian tensor, also said to be in natural form (Coope et al 1965), is a tensor of order l with l ranks one, such that all its irreducible tensors vanish except the one with the highest rank l, denoted from now on by $\left(T_{i}\right)^{l}$. The previously derived properties of $\langle p q r \mid l m\rangle$ imply that such a tensor T_{l} is completely symmetrical and traceless: namely, from equations (9), (12) and (15), its Cartesian components $\left(\boldsymbol{T}_{l}\right)_{i_{1} \ldots i_{i}}$ are invariant under any permutation of indices $i_{1} \ldots i_{i}$, and they will henceforth be denoted by

$$
\begin{equation*}
\left(T_{i}\right)_{p q r}=\left(T_{i}\right)_{m}^{l}(l m|p q r\rangle \quad p+q+r=l \tag{19}
\end{equation*}
$$

Furthermore, equation (16) yields

$$
\begin{equation*}
\left(T_{l}\right)_{p^{\prime}+2 q^{\prime} r^{\prime}}+\left(T_{l}\right)_{p^{\prime} q^{\prime}+2 r^{\prime}}+\left(T_{i}\right)_{p^{\prime} q^{\prime} r^{\prime}+2}=0 \quad p^{\prime}+q^{\prime}+r^{\prime}=l-2 \tag{20}
\end{equation*}
$$

which means that T_{l} is traceless on contraction of any pair of Cartesian indices. Actually, T_{1} is characterised by the two properties above (Coope et al 1965). An irreducible Cartesian tensor T_{l} has $2 l+1$ linearly independent components $\left(T_{l}\right)_{m}^{l}$. Therefore, its 3^{l} Cartesian components are not independent for $l \geqslant 2$: on the one hand they are completely symmetrical and thus there are

$$
\begin{equation*}
n_{l}=\frac{1}{2}(l+1)(l+2) \tag{21}
\end{equation*}
$$

components $\left(T_{i}\right)_{p q r}$; and on the other hand they have to satisfy the n_{l-2} relations (20). One thus recovers the proper number of linearly independent components for

$$
\begin{equation*}
2 l+1=n_{l}-n_{l-2} \tag{22}
\end{equation*}
$$

2.3. Spherical components in terms of the Cartesian ones

Since $n_{l}>2 l+1$ for $l \geqslant 2$, the expression for the spherical components of T_{l} in terms of
its Cartesian components arising from equation (8), i.e.

$$
\begin{equation*}
\left(T_{i}\right)_{m}^{l}=\sum_{\substack{p, q, r \\ p+q+r=1}} \frac{l!}{p!q!r!}\left(T_{l}\right)_{p q r}\langle p q r \mid l m\rangle \tag{23}
\end{equation*}
$$

is not unique. The extra factor $l!/ p!q!r!$ is the number of sequences of Cartesian indices $i_{1} \ldots i_{l}$ which correspond to given values of p, q and r. Taking advantage of this freedom, one now derives a minimal expansion for the spherical components

$$
\begin{equation*}
\left(T_{1}\right)_{m}^{b}=\sum_{\substack{p, q, r \\ p+q+r=1}}\left(T_{l}\right)_{p q r}(p q r \mid / m) \tag{24}
\end{equation*}
$$

where minimal means that each $\left(T_{l}\right)_{m}^{l}$ is expressed in terms of the smallest number of Cartesian components, and the ($p q r \mid l m$) are coefficients determined below.

Being completely symmetrical, the components ($\left.T_{i}\right)_{p q r}$ behave under the rotation group as the monomials $x^{p} y^{a} z^{r}$. From equations (2a) and (3) one thus has

$$
\begin{equation*}
\left(T_{l}\right)_{l}^{l}=T_{1}^{1 \ldots 1} \approx\left(\frac{-c}{\sqrt{2}}(x+\mathrm{i} y)\right)^{l}=c^{\prime} l!\left(\frac{4 \pi 2^{l}}{(2 l+1)(2 l)!}\right)^{1 / 2} \mathscr{Y}_{l l}(\rho, \vartheta, \varphi) \tag{25}
\end{equation*}
$$

where \approx means that a monomial $x^{p} y^{q} z^{\prime}$ stands for $\left(T_{i}\right)_{p q n}$ and $\mathscr{Y}_{l m}(\rho, \vartheta, \varphi)$ is a solid harmonics with

$$
\begin{equation*}
x=\rho \sin \vartheta \cos \varphi \quad y=\rho \sin \vartheta \sin \varphi \quad z=\rho \cos \vartheta \tag{26}
\end{equation*}
$$

The components $\left(T_{i}\right)_{m}^{l}$ are obtained by a repeated action of the infinitesimal generator J_{-}of the representation considered, which amounts to applying

$$
\begin{equation*}
j_{-}=(x-\mathrm{i} y) \frac{\partial}{\partial z}-2 z \frac{\partial}{\partial(x+\mathrm{i} y)} \tag{27}
\end{equation*}
$$

on the right-hand side of equation (25), yielding

$$
\begin{equation*}
\left(T_{i}\right)_{m}^{l} \approx c^{l} l!\left(\frac{4 \pi 2^{l}}{(2 l+1)(2 l)!}\right)^{1 / 2} \mathscr{Y}_{l m}(\rho, \vartheta, \varphi) . \tag{28}
\end{equation*}
$$

In terms of monomials the constraints (20) read

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=0 \tag{29}
\end{equation*}
$$

Taking into account this relation in the expression for $\mathscr{Y}_{l m}$, the minimum number of monomials $x^{p} y^{a} z^{r}$ is then obtained by replacing the two monomials $x^{2}+y^{2}$ by the single one $-z^{2}$. Since

$$
\begin{equation*}
x^{2}+y^{2}=\rho^{2}-\rho^{2} \cos ^{2} \vartheta \quad-z^{2}=-\rho^{2} \cos ^{2} \vartheta \tag{30}
\end{equation*}
$$

the above procedure amounts to taking in $\mathscr{Y}_{\text {lm }}$ only the coefficient of the highest degree in $\cos \vartheta$. One thereby finds

$$
\begin{equation*}
\left(T_{l}\right)_{ \pm|m|}^{\prime} \approx c^{\prime}\left(\frac{(2 l)!}{2^{\prime}(l-m)!(l+m)!}\right)^{1 / 2}[\mp(x+\mathrm{i} y)]^{|m|} z^{i-|m|} \tag{31}
\end{equation*}
$$

(cf table 1 for $l \leqslant 4$) and finally
$\left(T_{l}\right)_{ \pm|m|}^{l}=c^{\prime}\left(\frac{(2 l)!}{2^{\prime}(l-m)!(l+m)!}\right)^{1 / 2}(\mp 1)^{m} \sum_{\mu=0}^{|m|}(\pm \mathrm{i})^{\mu}\binom{|m|}{\mu}\left(T_{i}\right)_{|m|-\mu \mu l-|m|}$

Table 1. Spherical components ($\left.T_{l}\right)_{m}^{l}$ of an irreducible Cartesian tensor T_{l} in terms of its Cartesian components ($\left.T_{t}\right)_{\text {pqr }}$, here denoted by $x^{p} y^{q} z^{r}$, equation (31). The coefficient c_{i} occurs in the relation between the $\left(T_{i}\right)_{m}^{\prime}$ and the solid harmonics, equation (28).

1	m	$c^{-1}\left(T_{1}\right)_{m}^{\prime}$	$c_{t}=l!\left(\frac{2}{(2 l+1)(2 l)!}\right)^{1 / 2}$
0	0	1	1
1	± 1	$\mp \frac{1}{\sqrt{2}}(x \pm i y)$	$\frac{1}{\sqrt{3}}$
	0	z	
2	± 2	$\frac{1}{2}\left(x^{2} \pm 2 \mathrm{i} x y-y^{2}\right)$	$\sqrt{\frac{2}{15}}$
	± 1	$\mp(x z \pm \mathrm{i} y z)$	
	0	$\sqrt{\frac{3}{2}} z^{2}$	
3	± 3	$\mp \frac{1}{2 \sqrt{2}}\left(x^{3} \pm 3 i x^{2} y-3 x y^{2} \mp \mathrm{i} y^{3}\right)$	$\sqrt{\frac{2}{35}}$
	± 2	$\frac{\sqrt{3}}{2}\left(x^{2} z \pm 2 \mathrm{i} x y z-y^{2} z\right)$	
	± 1	$\mp \frac{1}{2} \sqrt{\frac{15}{2}}\left(x z^{2} \pm i y z^{2}\right)$	
	0	$\sqrt{\frac{3}{2}} z^{3}$	
4	± 4	$\frac{1}{4}\left(x^{4} \pm 4 \mathrm{i} x^{3} y-6 x^{2} y^{2} \mp 4 i x y^{3}+y^{4}\right)$	$\frac{2}{3} \sqrt{\frac{2}{35}}$
	± 3	$\mp \frac{1}{\sqrt{2}}\left(x^{3} z \pm 3 \mathrm{i} x^{2} y z-3 x y^{2} z \mp \mathrm{i} y^{3} z\right)$	
	± 2	$\frac{\sqrt{7}}{2}\left(x^{2} z^{2} \pm 2 i x y z^{2}-y^{2} z^{2}\right)$	
	± 1	$\mp \sqrt{\frac{1}{2}}\left(x z^{3} \pm i y z^{3}\right)$	
	0	$\frac{1}{2} \sqrt{\frac{35}{2}} z^{4}$	

$\left(p q r|l \pm|m|)=c^{l}(-1)^{m}(\pm 1)^{p} i^{q}\left(\frac{(2 l)!}{2^{l}(l-m)!(l+m)!}\right)^{1 / 2} \frac{(p+q)!}{p!q!} \delta_{p+q .|m|} \delta_{r, l-|m|}\right.$.
The same results can be obtained from

$$
\begin{equation*}
\left(T_{l}\right)_{m}^{l} \approx(-c)^{l}\left(\frac{(l+m)!}{2^{l}(2 l)!(l-m)!}\right)^{1 / 2} j_{-}^{l-m}(x+\mathrm{i} y)^{l}, \tag{33}
\end{equation*}
$$

where, using equation (27), $j_{-}^{l-m}(x+\mathrm{i} y)^{l}$ is computed recursively, replacing at each step $(x+\mathrm{i} y)(x-\mathrm{i} y)$ by $-z^{2}$ to take into account equation (29).

It follows from equation (14), or directly from equation (32b), that the coefficients (pqr|m) satisfy

$$
\begin{equation*}
(p q r \mid l m)^{*}=c^{-2 l}(-1)^{m}(p q r \mid l-m), \tag{34}
\end{equation*}
$$

and a further property reads

$$
\begin{equation*}
(p q r \mid l-m)=(-1)^{p}(p q r \mid m) . \tag{35}
\end{equation*}
$$

2.4. Cartesian components in terms of the spherical ones

The analogy between the monomials $x^{p} y^{q} z^{r}(p+q+r=l)$ and the Cartesian components $\left(T_{i}\right)_{p a r}$ provides us with a method of computing the coefficients $\langle l m \mid p q r\rangle$ which occur in equation (19). The expansion of $x^{p} y^{q} z^{\prime}$ in terms of monomials
$(x+\mathrm{i} y)^{s}(x-\mathrm{i} y)^{t} z^{\prime}$ reads
$\left(T_{1}\right)_{p q r} \approx(-\mathrm{i})^{q} \frac{1}{2^{p+q}} \sum_{k=0}^{p+q} \sum_{i} \frac{(-1)^{i} p!q!}{j!(k-j)!(p-k+j)!(q-j)!}(x+\mathrm{i} y)^{p+q-k}(x-\mathrm{i} y)^{k} z^{r}$.
Replacing $(x+\mathrm{i} y)(x-\mathrm{i} y)$ by $-z^{2}$ to take into account equation (29), and using equation (31), it becomes
$(x+\mathrm{i} y)^{p+q-k}(x-\mathrm{i} y)^{k} z^{\prime} \approx c^{-t}(-1)^{p+q-k}\left(\frac{2^{l}(l-m)!(l+m)!}{(2 l)!}\right)^{1 / 2}\left(T_{l}\right)_{m}^{\prime}$
where

$$
\begin{equation*}
m=p+q-2 k . \tag{38}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
\langle l m \mid p q r\rangle= & \langle p q r \mid l m\rangle^{*} \\
& =c^{-l} \mathrm{i}^{q}\left(2^{r-p-q} \frac{(l-m)!(l+m)!}{(2 l)!}\right)^{1 / 2} C(p, q, m) \frac{1-(-1)^{p+q+m}}{2} \delta_{l, p+q+r} \tag{39}
\end{align*}
$$

with

$$
\begin{align*}
C(p, q, m)= & \sum_{i} \frac{(-1)^{i} p!q!}{j!(p-j)!\left[\frac{1}{2}(p+q+m)-j\right]!\left[\frac{1}{2}(q-p-m)+j\right]!} \\
= & \frac{q!}{\left[\frac{1}{2}(p+q+m)\right]!\left[\frac{1}{2}(q-p-m)\right]!} \\
& \times{ }_{2} F_{1}\left[-p,-\frac{1}{2}(p+q+m) ; \frac{1}{2}(q-p-m)+1 ;-1\right] . \tag{40}
\end{align*}
$$

The value of the quantity $C(p, q, m)$ above is given in table 2 for constant $p+q \leqslant 8$.
Let us now derive some properties of coefficients $\langle l m \mid p q r\rangle$.
Symmetry relations. From equation (38) these coefficients vanish for $p+q+m$ odd. Furthermore, the symmetries of hypergeometric series imply

$$
\begin{equation*}
C(p, q, m)=(-1)^{(p+q+m) / 2} C(q, p, m)=(-1)^{p} C(p, q,-m) \tag{41}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\langle l m \mid p q r\rangle=(-1)^{(p+q+m) / 2} i^{q-p}\langle l m \mid q p r\rangle=(-1)^{p}\langle l-m \mid p q r\rangle . \tag{42}
\end{equation*}
$$

In particular, these relations induce

$$
\begin{array}{ll}
\langle l m \mid p p r\rangle=0 & \text { if } p+\frac{1}{2} m \text { odd } \\
\langle l 0 \mid p q r\rangle=0 & \text { if } p \text { odd } \tag{44}
\end{array}
$$

Furthermore, it is recalled that the coefficients $\langle l m \mid p q r\rangle$ satisfy equation (13), i.e.

$$
\begin{equation*}
\langle l m \mid p q r\rangle^{*}=c^{2 l}(-1)^{m}\langle l-m \mid p q r\rangle \tag{45}
\end{equation*}
$$

as can be checked directly from equation (39).
Generating function. Setting

$$
\begin{equation*}
x+\mathrm{i} y=u \quad x-\mathrm{i} y=-1 / u \quad z=1 \tag{46}
\end{equation*}
$$

Table 2. Cartesian components ($\left.T_{i}\right)_{p q r}$ of an irreducible Cartesian tensor T_{l} in terms of the $A_{i m}^{e}$, equation (51). The factor in front of each $A_{l m}^{e}$ of this table is equal to $C(p, q, m)$, equation (40).

p	9	r	$c^{\prime}(-\mathrm{i})^{a} 2^{p+a}\left(T_{1}\right)_{\text {par }}$
0	0	l	A_{10}^{1}
1	0	1-1	$-A_{11}{ }^{-1}$
0	1		A_{11}^{1}
2	0	1-2	$A_{12}^{1}-2 A_{10}^{1}$
1	1		$-A_{12}^{-2}$
0	2		$A_{12}^{1}+2 A_{10}^{1}$
3	0	1-3	$-A_{13}^{-1}+3 A_{11}^{-1}$
2	1		$A_{13}^{1}-A_{l 1}^{1}$
1	2		$-A_{13}^{-1}-A_{11}^{-1}$
0	3		$A_{13}^{1}+3 A_{11}^{1}$
4	0	$1-4$	$A_{14}^{1}-4 A_{12}^{1}+6 A_{i 0}^{1}$
3	1		$-A_{14}^{-1}+2 A_{12}^{-1}$
2	2		$A_{14}^{1}-2 A_{10}^{1}$
1	3		$-A_{14}^{-1}-2 A_{12}^{1}$
0	4		$A_{14}^{1}+4 A_{12}^{1}+6 A_{10}^{1}$
5	0	$l-5$	$-A_{15}^{-1}+5 A_{13}^{-1}-10 A_{11}^{-1}$
4	1		$A_{i 5}^{1}-3 A_{13}^{1}+2 A_{i 1}^{1}$
3	2		$-A_{i 5}^{-1}+A_{13}^{-1}+2 A_{i 1}^{-1}$
2	3		$A_{15}^{1}+A_{13}^{1}-2 A_{11}^{1}$
1	4		$-A_{15}^{-1}-3 A_{13}^{-1}-2 A_{11}^{-1}$
0	5		$A_{15}^{1}+5 A_{13}^{1}+10 A_{11}^{1}$
6	0	1-6	$A_{16}^{1}-6 A_{14}^{1}+15 A_{12}^{1}-20 A_{10}^{1}$
5	1		$-A_{16}^{-1}+4 A_{14}^{-1}-5 A_{12}^{-1}$
4	2		$A_{16}^{1}-2 A_{14}^{1}-A_{12}^{1}+4 A_{10}^{1}$
3	3		$-A_{16}^{-1}+3 A_{12}^{-1}$
2	4		$A_{16}^{1}+2 A_{14}^{1}-A_{12}^{1}-4 A_{10}^{1}$
1	5		$-A_{16}^{-1}-4 A_{14}^{-1}-5 A_{12}^{-1}$
0	6		$A_{16}^{1}+6 A_{i 4}^{1}+15 A_{12}^{1}+20 A_{i 0}^{1}$
7	0	1-7	$-A_{17}^{-1}+7 A_{15}^{-1}-21 A_{13}^{-1}+35 A_{11}^{-1}$
6	1		$A_{17}^{1}-5 A_{i 5}^{1}+9 A_{13}^{1}-5 A_{11}^{1}$
5	2		$-A_{17}^{-1}+3 A_{15}^{-1}-A_{13}^{-1}-5 A_{11}^{-1}$
4	3		$A_{17}^{1}-A_{15}^{1}-3 A_{13}^{1}+3 A_{11}^{1}$
3	4		$-A_{19}^{-1}-A_{15}^{-1}+3 A_{13}^{-1}+3 A_{11}^{-1}$
2	5		$A_{17}^{1}+3 A_{15}^{1}+A_{13}^{1}-5 A_{11}^{1}$
1	6		$-A_{17}^{-1}-5 A_{15}^{-1}-9 A_{13}^{-1}-5 A_{11}^{-1}$
0	7		$A_{17}^{1}+7 A_{15}^{1}+21 A_{13}^{1}+35 A_{11}^{1}$
8	0	1-8	$A_{18}^{18}-8 A_{16}^{1}+28 A_{14}^{1}-56 A_{12}^{1}+70 A_{10}^{1}$
7	1		$-A_{18}^{-1}+6 A_{16}^{-1}-14 A_{14}^{-1}+14 A_{12}^{-1}$
6	2		$A_{18}^{1}-4 A_{16}^{1}+4 A_{14}^{1}+4 A_{12}^{1}-10 A_{10}$
5	3		$-A_{18}^{-1}+2 A_{16}^{-1}+2 A_{14}^{-1}-6 A_{12}^{-1}$
4	4		$A_{18}^{1}-4 A_{14}^{1}+6 A_{10}^{1}$
3	5		$-A_{18}^{-1}-2 A_{16}^{-1}+2 A_{14}^{-1}+6 A_{12}^{-1}$
2	6		$A_{18}^{1}+4 A_{16}^{1}+4 A_{14}^{1}-4 A_{12}^{1}-10 A_{10}^{1}$
1	7		$-A_{18}^{-1}-6 A_{16}^{-1}-14 A_{14}^{-1}-14 A_{12}^{-1}$
0	8		$A_{18}^{1}+8 A_{16}^{1}+28 A_{14}^{1}+56 A_{12}^{1}+70 A_{10}^{1}$

in $x^{p} y^{q} z^{r}$ to take into account the relation (29), one gets, on comparing with equations (36) and (39), a generating function

$$
\begin{align*}
F_{p q r}(u) & =c^{-l}(-1)^{p} \mathrm{i}^{q}\left(\frac{2^{r-p-q}}{(2 l)!}\right)^{1 / 2}\left(u-\frac{1}{u}\right)^{p}\left(u+\frac{1}{u}\right)^{q} \\
& =\sum_{\substack{m=-(p+q) \\
p+q+m \text { even }}}^{p+q} \frac{u^{m}}{[(l-m)!(l+m)!]^{1 / 2}}\langle l m \mid p q r\rangle \tag{47}
\end{align*}
$$

with $p+q+r=l$ always. This generating function allows us to check the unitary character of the Cartesian-spherical transformation in the special case considered. Indeed, one establishes

$$
\begin{equation*}
\sum_{p, q, r=0}^{\infty} \frac{(p+q+r)!}{p!q!r!} F_{p q r}(u) F_{p q r}^{*}\left(u^{\prime}\right)=\sum_{l=0}^{\infty} \sum_{m=-l}^{i} \frac{\left(u u^{\prime}\right)^{m}}{(l-m)!(l+m)!} \tag{48}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\sum_{\substack{p, q, r \\ p+q+r=1}} \frac{l!}{p!q!r!}\langle l m \mid p q r\rangle\left\langle l m^{\prime} \mid p q r\right\rangle^{*}=\delta_{m m^{\prime}} . \tag{49}
\end{equation*}
$$

Special value. It arises from equations (39) and (40) that

$$
\begin{equation*}
\left\langle l m \mid 00 l^{\prime}\right\rangle=c^{-l}(\sqrt{2})^{\prime} \frac{l!}{\sqrt{(2 l)!}} \delta_{l / \prime} \delta_{m 0} \tag{50}
\end{equation*}
$$

Taking advantage of equation (42), the expression (19) for the Cartesian components $\left(T_{i}\right)_{\mathrm{pq}}$ in terms of the spherical components $\left(T_{i}\right)_{m}^{l}$ can be rewritten as

$$
\begin{equation*}
\left(T_{i}\right)_{\text {par }}=c^{-1} \frac{\mathrm{i}^{q}}{2^{p+q}} \sum_{\substack{m=0 \\ p+q+m \text { even }}}^{p+q} C(p, q, m) A_{l m}^{(-1)^{p}} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{l m}^{\varepsilon}=\frac{1}{1+\delta_{m 0}}\left(\frac{2^{l}(l-m)!(l+m)!}{(2 l)!}\right)^{1 / 2}\left[\left(T_{l}\right)_{m}^{l}+\varepsilon\left(T_{l}\right)_{-m}^{l}\right] \tag{52}
\end{equation*}
$$

with $\varepsilon= \pm 1$ and as always $l=p+q+r$. These expressions for $\left(T_{i}\right)_{p q r}$ are listed in table 2 for $p+q \leqslant 8$.

Since A_{10}^{-1} vanishes, there are $2 l+1$ linearly independent objects $\left\{A_{10}^{1}, A_{i m}^{\varepsilon} ; m=\right.$ $1, \ldots, l, \varepsilon= \pm 1\}$ which can be considered instead of the $2 l+1$ spherical components $\left(T_{1}\right)_{m}^{l}$. Using the minimal expansion (24) for the ($\left.T_{i}\right)_{m}^{l}$, the $A_{i m}^{\varepsilon}$ read, in terms of the Cartesian components $\left(T_{l}\right)_{p q r} \approx x^{p} y^{q} z^{r}$,

$$
\begin{equation*}
A_{l m}^{\varepsilon} \approx c^{l}(-1)^{m} \sum_{\mu=0}^{m} \mathrm{i}^{\mu}\binom{m}{\mu} \frac{1+\varepsilon(-1)^{m+\mu}}{1+\delta_{m 0}} x^{m-\mu} y^{\mu} z^{l-m} \quad m \geqslant 0 . \tag{53}
\end{equation*}
$$

Actually, instead of the $\boldsymbol{A}_{l m}^{\varepsilon}$ one usually considers proportional quantities normalised in such a way that the coefficient of the monomial with the highest degree in x, i.e. forgetting z, x^{m} or $x^{m-1} y$, be one, except if there exists a monomial y^{m} and no monomial x^{m} in which case the coefficient of y^{m} is taken equal to one. Casting the
dependence upon z aside, one then defines polynomials B_{m}^{ε} in x and y, distinguishing four cases:

$$
\begin{array}{lll}
A_{l m}^{\epsilon} \approx c^{l} f_{m}^{\varepsilon} B_{m}^{e} z^{1-m} \\
f_{2 n}^{1}=\frac{2}{1+\delta_{n 0}} & B_{2 n}^{1}=\sum_{\nu=0}^{n}(-1)^{\nu}\binom{2 n}{2 \nu} x^{2 n-2 \nu} y^{2 \nu} & n=0,1, \ldots \\
f_{2 n}^{-1}=4 n \mathrm{i} & B_{2 n}^{-1}=\frac{1}{2 n} \sum_{\nu=0}^{n-1}(-1)^{\nu}\binom{2 n}{2 \nu+1} x^{2 n-2 \nu-1} y^{2 \nu+1} & n=1,2, \ldots \\
f_{2 n+1}^{1}=2 \mathrm{i}(-1)^{n+1} & B_{2 n+1}^{1}=(-1)^{n} \sum_{\nu=0}^{n}(-1)^{\nu}\binom{2 n+1}{2 \nu+1} x^{2 n-2 \nu} y^{2 \nu+1} & n=0,1, \ldots \\
f_{2 n+1}^{-1}=-2 & B_{2 n+1}^{-1}=\sum_{\nu=0}^{n}(-1)^{\nu}\binom{2 n+1}{2 \nu} x^{2 n+1-2 \nu} y^{2 \nu} & n=0,1, \ldots
\end{array}
$$

These polynomials B_{m}^{ε} are listed in table 3 for $l \leqslant 6$.

Table 3. Polynomials B_{m}^{e} in x and y which occur in the minimal expansion of the $A_{l m}^{c}$ in terms of the spherical components ($\left.T_{i}\right)_{p q r}$, here denoted by $x^{p} y^{q} z^{\prime}$, equations ($54 b-e$).

m	ε	B_{m}^{ε}
0	1	1
1	1	y
	-1	x
2	1	$x^{2}-y^{2}$
	-1	$x y$
3	1	$y^{3}-3 x^{2} y$
	-1	$x^{3}-3 x y^{2}$
4	1	$x^{4}-6 x^{2} y^{2}+y^{4}$
	-1	$x^{3} y-x y^{3}$
5	1	$y^{5}-10 x^{2} y^{3}+5 x^{4} y$
	-1	$x^{5}-10 x^{3} y^{2}+5 x y^{4}$
6	1	$x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6}$
	-1	$x^{5} y-\frac{10}{3} x^{3} y^{3}+x y^{5}$

3. Tensors built with spin operators

3.1. Description of a spin-s particle

To describe a spin-s particle one considers the algebra \mathscr{A}_{s} over the complex field of operators A, functions of the fundamental observables $S_{i}(i=x, y, z)$ which satisfy the commutation relations of angular momenta:

$$
\begin{equation*}
\left[S_{i}, S_{i}\right]=\mathrm{i} \varepsilon_{i j k} S_{k} . \tag{55}
\end{equation*}
$$

These operators act in the $(2 s+1)$-dimensional space \mathscr{H}_{s} spanned by the orthonormal basis $(\mid s \mu) ; \mu=s, s-1, \ldots,-s)$ which forms a standard basis of the representation of
the rotation group on \mathscr{H}_{s} :

$$
\begin{align*}
& \left.\left(S_{x} \pm \mathrm{i} S_{y}\right)|s \mu\rangle=\sqrt{(s \mp \mu)(s \pm \mu+1)}|s \mu \pm 1\rangle \quad S_{z} \mid s \mu\right)=\mu|s \mu\rangle \tag{56a}\\
& S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=s(s+1) 1 . \tag{56b}
\end{align*}
$$

The operators A in \mathscr{A}_{s} transform under the rotation group according to the adjoint representation, the infinitesimal generators of which are defined by

$$
\begin{equation*}
J_{i} A=\left[S_{i}, A\right] \tag{57}
\end{equation*}
$$

The algebra \mathscr{A}_{s} is spanned by the $(2 s+1)^{2}$ uncoupled generalised projection operators $|s \mu\rangle\langle s \mu \prime$, which are orthogonal in the following way:

$$
\begin{equation*}
\operatorname{Tr}\left[|s \mu\rangle\left\langle s \mu^{\prime}\right|\left(|s \nu\rangle\left\langle s \nu^{\prime}\right|\right)^{+}\right]=\delta_{\mu \nu} \delta_{\mu^{\prime} \nu^{\prime}} \tag{58}
\end{equation*}
$$

Therefore, any operator A in \mathscr{A}_{s}, especially the density operator associated with the description of any physical state, can be expressed as

$$
\begin{equation*}
A=\sum_{\mu, \mu^{\prime}}|s \mu\rangle\left\langle s \mu^{\prime}\right| \operatorname{Tr}\left[A\left(|s \mu\rangle\left\langle s \mu^{\prime}\right|\right)^{+}\right]=\sum_{\mu, \mu^{\prime}}|s \mu\rangle\langle s \mu| A\left|s \mu^{\prime}\right\rangle\left\langle s \mu^{\prime}\right| . \tag{59}
\end{equation*}
$$

Since we are interested in the behaviour of operators under the rotation group, it is convenient to define irreducible tensor operators which are proportional to coupled generalised projection operators (Raynal 1964, 1972):

$$
\begin{gather*}
T_{s m}^{\prime}=a_{s t} \sum_{\mu, \mu^{\prime}}(-1)^{s-\mu^{\prime}}\left\langle s s \mu-\mu^{\prime} \mid l m\right\rangle|s \mu\rangle\left\langle s \mu^{\prime}\right| \quad l \tag{60a}\\
|s \mu\rangle\left\langle s \mu^{\prime}\right|=(-1)^{s-\mu^{\prime}} \sum_{l, m} \frac{1}{a_{s l}}\left\langle s s \mu-\mu^{\prime} \mid l m\right\rangle T_{s m}^{l}
\end{gather*}
$$

where the $a_{s l}$ are non-zero complex normalisation coefficients to be chosen. In terms of the notations for the tensorial character specified by Normand (1980), one has, from equations (11.12) and (11.13),

$$
\begin{align*}
& |s \mu\rangle\left(s \mu^{\prime} \mid=P_{\mu \mu}^{s}\right. \tag{61a}\\
& T_{s m}^{l}=a_{s l}(-1)^{2 s} c_{s} P^{[s s)[1]} . \tag{61b}
\end{align*}
$$

The operators $T_{s m}^{l}$ span the algebra \mathscr{A}_{s}, and it follows from the orthogonality relation of Clebsch-Gordan coefficients that they are also orthogonal according to

$$
\begin{equation*}
\operatorname{Tr}\left(T_{s m}^{l} T_{s m^{\prime}}^{l^{+}}\right)=\left|a_{s i}\right|^{2} \delta_{l \mid} \delta_{m m^{\prime}} . \tag{62}
\end{equation*}
$$

Any operator A in \mathscr{A}_{s}, e.g. a density operator, then reads

$$
\begin{equation*}
A=\sum_{l, m} T_{s m}^{l} \frac{1}{\left|a_{s l}\right|^{2}} \operatorname{Tr}\left(A T_{s m}^{l+}\right) \tag{63}
\end{equation*}
$$

One should notice that

$$
\begin{equation*}
T_{s m}^{l+}=\frac{a_{s l}^{*}}{a_{s l}}(-1)^{m} T_{s-m}^{l} . \tag{64}
\end{equation*}
$$

As is usual (Madison convention 1971), one from now on chooses

$$
\begin{equation*}
a_{s l}=c^{\prime} \sqrt{2 s+1} \tag{65}
\end{equation*}
$$

where the factor c is identical to the one considered previously, equation (4). One then
has

$$
\begin{align*}
& T_{s 0}^{0}=\mathbf{1} \tag{66a}\\
& T_{s m}^{l+}=c^{-2 l}(-1)^{m} T_{s-m}^{\prime} \tag{66b}\\
& \operatorname{Tr}\left(T_{s m}^{l} T_{s m^{+}}^{l+}\right)=(2 s+1) \delta_{l l} \delta_{m m^{\prime}} \tag{66c}\\
& A=\frac{1}{2 s+1} \sum_{l, m} T_{s m}^{\prime} \operatorname{Tr}\left(A T_{s m}^{l+}\right) \tag{66d}
\end{align*}
$$

Applying the results of $\S 2.2$, one defines from the $T_{s m}^{l}$ an irreducible Cartesian tensor $T_{s l}$, the only non-zero irreducible spherical components of which are the $T_{s m}{ }^{l}$. The Cartesian components ($\left.T_{s l}\right)_{p q r}$ are then defined in terms of the basis of operators ($T_{s m}^{\prime}$) by equation (19), or, using equation (60a), in terms of the other basis of $\mathscr{A}_{s}\left(|s \mu\rangle\left(s \mu^{\prime} \mid\right)\right.$, i.e.

$$
\begin{align*}
\left(T_{s l}\right)_{p q r} & =\sum_{m} T_{s m}^{\prime}\langle l m \mid p q r\rangle \tag{67a}\\
& =c^{\prime} \sqrt{2 s+1} \sum_{m, \mu, \mu^{\prime}}|s \mu\rangle\left\langle s \mu^{\prime}\right|(-1)^{s-\mu^{\prime}}\left\langle s s \mu-\mu^{\prime} \mid l m\right\rangle\langle l m \mid p q r\rangle \tag{67b}
\end{align*}
$$

It follows from equations (45) and (66b) that the operators $\left(T_{s l}\right)_{p q}$ are Hermitian:

$$
\begin{equation*}
\left(T_{s l}\right)_{p q r}^{+}=\left(T_{s l}\right)_{p q r} \tag{68}
\end{equation*}
$$

Using the orthogonality relation (49) of coefficients $\langle l m \mid p q r\rangle$ and equation (66d), one shows that any operator A in \mathscr{A}_{s}, e.g. a density operator, can be written as

$$
\begin{equation*}
A=\frac{1}{2 s+1} \sum_{l, p, q, r} \delta_{l, p+q+r} \frac{l!}{p!q!r!}\left(T_{s l}\right)_{p q r} \operatorname{Tr}\left[A\left(T_{s l}\right)_{p q r}\right] \tag{69}
\end{equation*}
$$

Hence, the operators $\left(T_{s l}\right)_{p q r}$, which are not linearly independent since they satisfy equation (20), form an overcomplete set of operators which span \mathscr{A}_{s}. Indeed, one can check, using equation (21), that they are in number

$$
\begin{equation*}
\sum_{l=0}^{2 s} n_{l}=\frac{1}{6}(2 s+1)(2 s+2)(2 s+3) \tag{70}
\end{equation*}
$$

which is greater than the dimension $(2 s+1)^{2}$ of \mathscr{A}_{s} for $s>\frac{1}{2}$, the equality occurring for $s=0$ and $\frac{1}{2}$. It should be noted that the operators $\left(T_{s i}\right)_{p q r}$ are non-orthogonal in the trace meaning. The expression of $\left(T_{s l}\right)_{m}^{l}$ in terms of the $\left(T_{s l}\right)_{p q r}$ is not unique and can be taken as the minimal expansion (24) derived in $\S 2.3$.

3.2. Expression of tensors in terms of spin operators

Our aim now is to express the previously defined irreducible Cartesian tensors $T_{s t}$ in terms of products of the spin operators S_{x}, S_{y} and S_{z}. Actually, one usually considers a multiple $P_{s l}$ of $T_{s l}$,

$$
\begin{equation*}
P_{s l}=\frac{1}{n_{s l}} T_{s l}, \tag{71}
\end{equation*}
$$

with the normalisation condition

$$
\begin{equation*}
\left(P_{s l}\right)_{00 \mid}|s s\rangle=|s s\rangle \tag{72}
\end{equation*}
$$

from which $n_{s l}$ is determined later in §3.3.

One first derives the expression of the Cartesian component $\left(P_{s t}\right)_{00 t}$ in terms of the spin operators. It arises from equations (71), (67b) and (50) that

$$
\begin{equation*}
\left(P_{s l}\right)_{00 l}=c^{\prime} \sqrt{2 s+1} \frac{\langle l 0 \mid 00 l\rangle}{n_{s l}} \sum_{\mu}(-1)^{s-\mu}\langle s s \mu-\mu \mid l 0\rangle|s \mu\rangle\langle s \mu| . \tag{73}
\end{equation*}
$$

Hence, $\left(P_{s t}\right)_{00 l}$ is diagonal in the standard basis $(|s \mu\rangle)$ and can therefore be expressed in terms of S_{z} only:

$$
\begin{equation*}
\left(P_{s l}\right)_{00 l}=f_{s l}\left(S_{z}\right) \tag{74}
\end{equation*}
$$

Furthermore, the diagonal matrix elements $\langle s \mu|\left(P_{s i}\right)_{001}|s \mu\rangle$ are proportional to the Clebsch-Gordan coefficients $\langle s s \mu-\mu \mid l 0\rangle$, the orthogonality relation of which yields

$$
\begin{equation*}
\sum_{\mu} f_{s l}(\mu) f_{s l^{\prime}}(\mu) \propto \delta_{l^{\prime}} \tag{75}
\end{equation*}
$$

The $f_{s i}(\mu)$ are thus orthogonal polynomials of the discrete variable $\mu=s, s-1, \ldots,-s$. They are multiples of the Tchebichef polynomials (Bateman 1953) $t_{l}(\mu+s)$, the relevant properties of which are summed up in the appendix. It follows from the normalisation condition (72) and equation (A10) that

$$
\begin{equation*}
\left(P_{s l}\right)_{00 l}=\sum_{\lambda=0}^{[\mid / 2]} a_{s l}^{\lambda} S_{z}^{l-2 \lambda}=\frac{(2 s-l)!}{(2 s)!} t_{l}\left(S_{z}+s\right) \tag{76}
\end{equation*}
$$

where $[l / 2]=l / 2$ or $(l-1) / 2$ according to whether l is even or odd. The $\left(P_{s l}\right)_{00 l}$ are listed in table 4 for $l \leqslant 10$. Ohlsen (1972) gave similar results without pointing out the relation with the Tchebichef polynomials.

Let us come to the $\left(P_{s t}\right)_{p q r}$ with $p+q \neq 0$. It has been noted in $\S 2.3$ that the $\left(T_{t}\right)_{p q r}$ behave under the rotation group as the monomials $x^{p} y^{q} z^{\prime}$, and likewise for the proportional quantities $\left(P_{s l}\right)_{p q r}$. Hence, the action on $\left(P_{s l}\right)_{p q r}$ of the infinitesimal generators J_{i} of the representation considered, here the adjoint one, cf equation (57), amounts to applying the infinitesimal generators j_{i} on $x^{p} y^{a} z^{r}$. For instance, one gets with J_{x}

$$
\begin{align*}
J_{x}\left(P_{s l}\right)_{p q r} \approx & \frac{\mathrm{i}}{n_{s l}}\left(z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}\right) x^{p} y^{q} z^{r}=\frac{\mathrm{i}}{n_{s l}}\left(q x^{p} y^{q-1} z^{r+1}-r x^{p} y^{q+1} z^{r-1}\right) \\
& =\mathrm{i}\left[q\left(P_{s l}\right)_{p q-1 r+1}-r\left(P_{s l}\right)_{p q+1 r-1}\right] \tag{77}
\end{align*}
$$

and similar equations hold with J_{y} and J_{z}. It is not convenient to express the $\left(P_{s t}\right)_{p q r}$ in terms of ordered products $S_{x}^{\alpha} S_{y}^{\beta} S_{z}^{\gamma}$, since the commutator of a spin operator with such a product of order $\alpha+\beta+\gamma$ generates ordered products of all orders $\leqslant \alpha+\beta+\gamma$. This is why we consider the completely symmetrical products of spin operators defined by

$$
\begin{equation*}
\left\{S_{x}^{\alpha} S_{y}^{\beta} S_{z}^{\gamma}\right\}=\frac{\alpha!\beta!\gamma!}{(\alpha+\beta+\gamma)!} \sum S_{i_{1}} \ldots S_{i_{\alpha+\beta+\gamma}} \tag{78}
\end{equation*}
$$

the sum being over the $(\alpha+\beta+\gamma)!/ \alpha!\beta!\gamma!$ distinct permutations where S_{x}, S_{y} and S_{z} occur, respectively, α, β and γ times. The commutator of a spin operator with a symmetrised product of order $\alpha+\beta+\gamma$ can then be expressed in terms of symmetrised

Table 4. Cartesian components ($\left.P_{s i}\right)_{001}$ in terms of the spin operator S_{z}, equation (76). The l_{l} are the Tchebichef polynomials of a discrete variable, equation (A1).

$$
\begin{align*}
& 1 \quad\left(P_{s t}\right)_{001}=\sum_{\lambda=0}^{(/ 1 / 2]} a_{s}^{\lambda} S_{z}^{I-2 \lambda}=\frac{(2 s-l)!}{(2 s)!} t_{t}\left(S_{z}+s\right) ; K=s(s+1) \\
& 0 \quad 1 \\
& 1 \quad \frac{1}{s} S_{z} \\
& 2 \frac{1}{s(2 s-1)}\left(3 S_{z}^{2}-K\right) \\
& 3 \frac{1}{s(2 s-1)(s-1)}\left[5 S_{z}^{3}-(3 K-1) S_{z}\right] \\
& 4 \quad \frac{1}{s(2 s-1)(2 s-2)(2 s-3)}\left[5 \times 7 S_{z}^{4}-5(2 \times 3 K-5) S_{z}^{2}+3 K(K-2)\right] \\
& 5 \quad \frac{(2 s-5)!}{(2 s)!} 2^{2}\left[3^{2} \times 7 S_{z}^{5}-5 \times 7(2 K-3) S_{z}^{3}+\left(3 \times 5 K^{2}-2 \times 5^{2} K+2^{2} \times 3\right) S_{z}\right] \\
& 6 \quad \frac{(2 s-6)!}{(2 s)!} 2^{2}\left[3 \times 7 \times 11 S_{z}^{6}-3 \times 5 \times 7(3 K-7) S_{z}^{4}+3 \times 7\left(5 K^{2}-5^{2} K+2 \times 7\right) S_{z}^{2}\right. \\
& \left.-5\left(K^{3}-2^{3} K^{2}+2^{2} \times 3 K\right)\right] \\
& \frac{(2 s-7)!}{(2 s)!} 2^{3}\left[3 \times 11 \times 13 S_{z}^{7}-3 \times 7 \times 11(3 K-2 \times 5) S_{z}^{5}+3 \times 7\left(3 \times 5 K^{2}-3 \times 5 \times 7 K+101\right) S_{z}^{3}\right. \\
& \left.-\left(5 \times 7 K^{3}-5 \times 7 \times 11 K^{2}+2 \times 3^{2} \times 7^{2} K-2^{2} \times 3^{2} \times 5\right) S_{z}\right] \\
& \frac{2 s-8)!}{(2 s)!} 2\left[3^{2} \times 5 \times 11 \times 13 S_{z}^{8}-2 \times 3 \times 7 \times 11 \times 13\left(2 K-3^{2}\right) S_{z}^{6}\right. \tag{8}\\
& +3 \times 5 \times 7 \times 11\left(2 \times 3 K^{2}-2^{3} \times 7 K+3^{4}\right) S_{z}^{4} \\
& -2 \times 3\left(2 \times 3 \times 5 \times 7 K^{3}-3 \times 5 \times 7 \times 29 K^{2}+2 \times 7^{2} \times 101 K-2 \times 3 \times 761\right) S_{z}^{2} \\
& \left.+5 \times 7\left(K^{4}-2^{2} \times 5 K^{3}+2^{2} \times 3^{3} K^{2}-2^{4} \times 3^{2} K\right)\right] \\
& \frac{(2 s-9)!}{(2 s)!} 2^{2}\left[5 \times 11 \times 13 \times 17 S_{z}^{9}-2 \times 3 \times 5 \times 11 \times 13(2 \times 3 K-5 \times 7) S_{z}^{7}\right. \\
& +3 \times 7 \times 11 \times 13\left(2 \times 3 K^{2}-2^{3} \times 3^{2} K+5 \times 29\right) S_{z}^{5} \\
& -2 \times 5 \times 11\left(2 \times 3 \times 7 K^{3}-3 \times 7 \times 37 K^{2}+2 \times 3^{5} \times 7 K-2 \times 5 \times 263\right) S_{z}^{3} \\
& \left.+3\left(3 \times 5 \times 7 K^{4}-2^{2} \times 5 \times 7 \times 19 K^{3}+2^{2} \times 7 \times 673 K^{2}-2^{4} \times 3 \times 761 K+2^{6} \times 3 \times 5 \times 7\right) S_{z}\right] \\
& \frac{(2 s-10)!}{(2 s)!} 2^{2}\left[11 \times 13 \times 17 \times 19 S_{z}^{10}-3 \times 5 \times 11 \times 13 \times 17(3 K-2 \times 11) S_{z}^{8}\right. \\
& +3 \times 7 \times 11 \times 13\left(2 \times 3 \times 5 K^{2}-2 \times 3^{2} \times 5^{2} K+11 \times 109\right) S_{z}^{6} \\
& -5 \times 11 \times 13\left(2 \times 3 \times 7 K^{3}-2 \times 3 \times 7 \times 23 K^{2}+3^{3} \times 7 \times 29 K-2^{3} \times 11 \times 71\right) S_{z}^{4} \\
& +3 \times 11\left(3 \times 5 \times 7 K^{4}-2 \times 5 \times 7 \times 47 K^{3}\right. \\
& \left.+2^{4} \times 5 \times 7 \times 53 K^{2}-2^{2} \times 3 \times 5^{2} \times 263 K+2^{4} \times 3 \times 11 \times 61\right) S_{z}^{2} \\
& \left.-3^{2} \times 7\left(K^{5}-2^{3} \times 5 K^{4}+2^{2} \times 127 K^{3}-2^{8} \times 3^{2} K^{2}+2^{6} \times 3^{2} \times 5 K\right)\right]
\end{align*}
$$

products of the same order. Indeed, these products satisfy the relation (77); e.g. with J_{x}

$$
\begin{equation*}
J_{x}\left\{S_{x}^{\alpha} S_{y}^{\beta} S_{z}^{\gamma}\right\}=\mathrm{i}\left(\beta\left\{S_{x}^{\alpha} S_{y}^{\beta-1} S_{z}^{\gamma+1}\right\}-\gamma\left\{S_{x}^{\alpha} S_{y}^{\beta+1} S_{z}^{\gamma-1}\right\}\right) \tag{79}
\end{equation*}
$$

In order to establish this result one considers the generating function
$F_{1}(x, y, z)=\left(x S_{x}+y S_{y}+z S_{z}\right)^{\prime}=\sum_{\substack{\alpha, \beta, \gamma \\ \alpha+\beta+\gamma=1}} \frac{l!}{\alpha!\beta!\gamma!} x^{\alpha} y^{\beta} z^{\gamma}\left\{S_{x}^{\alpha} S_{y}^{\beta} S_{z}^{\gamma}\right\}$.

One then has

$$
\begin{align*}
J_{x} F_{l}(x, y, z) & =\sum_{\substack{\alpha, \beta, \gamma \\
\alpha+\beta+\gamma=1}} \frac{l!}{\alpha!\beta!\gamma!} x^{\alpha} y^{\beta} z^{\gamma}\left[S_{x},\left\{S_{x}^{\alpha} S_{y}^{\beta} S_{z}^{\gamma}\right\}\right] \\
& =\mathrm{i} \sum_{k=0}^{l-1}\left(x S_{x}+y S_{y}+z S_{z}\right)^{k}\left(y S_{z}-z S_{y}\right)\left(x S_{x}+y S_{y}+z S_{z}\right)^{l-k-1} \\
& =\mathrm{i} \sum_{\substack{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \\
\alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}=1}} \frac{l!}{\alpha^{\prime}!\beta^{\prime}!\gamma^{\prime}!} x^{\alpha^{\prime}} y^{\beta^{\prime}} z^{\gamma^{\prime}}\left(y\left\{S_{x}^{\alpha^{\prime}} S_{y}^{\beta_{y}^{\prime}} S_{z}^{\gamma^{\prime}+1}\right\}-z\left\{S_{x}^{\alpha^{\prime}} S_{y}^{\beta^{\prime}+1} S_{z}^{\gamma^{\prime}}\right\}\right) \tag{81}
\end{align*}
$$

which yields the announced result. One should notice that the monomials in S_{z} which occur in equation (76) are trivially of the symmetrised type. It can now be directly checked that the expression

$$
\begin{align*}
\left(P_{s l}\right)_{D a r}= & \sum_{\lambda=0}^{[1 / 2]} a_{s l}^{\lambda} \frac{(l-2 \lambda)!\lambda!p!q!r!}{l!} \sum_{p^{\prime}=0}^{[p / 2]} \sum_{q^{\prime}=0}^{[q / 2]} \sum_{r^{\prime}=0}^{r / 2]} \delta_{\lambda, p^{\prime}+q^{\prime}+r^{\prime}} \\
& \times \frac{1}{p^{\prime}!q^{\prime}!r^{\prime}!\left(p-2 p^{\prime}\right)!\left(q-2 q^{\prime}\right)!\left(r-2 r^{\prime}\right)!}\left\{S_{x}^{p-2 p^{\prime}} S_{y}^{q-2 q^{\prime}} S_{z}^{r-2 r^{\prime}}\right\} \tag{82}
\end{align*}
$$

fulfils equation (77) and coincides with the expression (76) for $p=q=0$. Therefore, it is the result we are looking for. These $\left(P_{s t}\right)_{p q}$, are given in table 5 for $l \leqslant 6$ and in table 6 for

Table 5. Cartesian components $\left(P_{s l}\right)_{p q r}$ in terms of symmetrised products of spin operators, equations (78) and (82). Only the components with $p \leqslant q \leqslant r$ are listed, the other components being obtained from permutations over the indices x, y and z.

l	p	9	'	$\left(P_{s t}\right)_{\text {par }}$
0	0	0	0	1
1	0	0	1	$a_{s 1}^{0} S_{z}$
2	0	0 1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & a_{s s_{2}^{0}}^{0} S_{z}^{2}+a_{s 2}^{1} 1 \\ & a_{s 2}^{2}\left\{S_{y} S_{z}\right\} \end{aligned}$
3	0 0 1	0 1 1	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & a_{55}^{0} S_{z}^{3}+a_{s 3}^{1} S_{z} \\ & a_{53}^{6}\left\{S_{S} S_{z}^{2}\right\}+\frac{1}{3} a_{s 3}^{1} S_{y} \\ & a_{s 3}^{0}\left\{S_{x} S_{y} S_{z}\right\} \end{aligned}$
4	0 0 0 1	0 1 2 1	4 3 2 2	
5	0 0 0	0 1 2 1 2	5 4 3 3 2	
6	0 0 0 1 0 1 2	0 1 2 1 3 2 2	6 5 5 4 4 3 3 2	

Table 6. Cartesian and spherical components of $P_{s l}$. The coefficient $n_{s l}$ relates $P_{s t}$ to $T_{s l}$ according to equation (71).

s	1	$n_{s t}$	p	q	r	$\left(P_{s t}\right)_{p q}$	m	$c^{-1}\left(P_{s t}\right)_{m}^{\prime}$
0	0	1	0	0	0	1	0	1
$\frac{1}{2}$	0	1	0	0	0	1	0	1
	1	1	0			$2 S_{2}$	$\begin{array}{r} \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \mp \sqrt{2}\left(S_{x} \pm i S_{y}\right) \\ & 2 \boldsymbol{S}_{z} \end{aligned}$
1	0	1	0	0	0	1	0	1
	1	$\sqrt{\frac{3}{2}}$	0		1 $=S_{i}$	S_{2}	$\begin{array}{r} \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \mp \frac{1}{\sqrt{S}}\left(S_{x} \pm i S_{y}\right) \\ & S_{z} \end{aligned}$
	2	$\frac{1}{3}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1 $(P$	$\begin{aligned} & 2 \\ & 1 \\ & i=\frac{3}{2}(S \end{aligned}$	$\begin{aligned} & 3\left(S_{z}^{2}-\frac{2}{3} 1\right) \\ & \frac{3}{2}\left(S_{y} S_{z}+S_{S} S_{y}\right) \\ & \left.S_{i}+S_{r} S_{i}\right)-21 \delta_{i j} \end{aligned}$	$\begin{array}{r} \pm 2 \\ \pm 1 \\ 0 \end{array}$	
$\frac{3}{2}$	0	1	0	0	0	1	0	1
	1	$\sqrt{3}$	0			${ }_{3}^{2} S_{z}$	$\begin{array}{r} \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \mp=\frac{\sqrt{2}}{3}\left(S_{x} \pm i S_{y}\right) \\ & \frac{2}{3} S_{3} S_{z} \end{aligned}$
	2	$\sqrt{\frac{2}{3}}$	0	0 1 $(P$	$\begin{aligned} & 2 \\ & 1 \\ & i=\frac{1}{2}(S \end{aligned}$	$\begin{aligned} & S_{2}^{2}-\frac{5}{4} 1 \\ & \frac{1}{2}\left(S_{y} S_{z}+S_{z} S_{y}\right) \\ & \left.S_{i}+S_{i} S_{i}\right)-\frac{5}{4} 1 \delta_{i i} \end{aligned}$	$\begin{array}{r} \pm 2 \\ \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \frac{1}{2}\left[S_{x}^{2}-S_{y}^{2} \pm i\left(S_{x} S_{y}+S_{y} S_{x}\right)\right] \\ & +\frac{1}{2}\left[S_{x} S_{y}+S_{z} S_{x} \pm i\left(S_{y} S_{z}+S_{z} S_{y}\right)\right] \\ & \sqrt{2}\left(\frac{5}{2}\left(S_{z}^{2}-\frac{5}{4} 1\right)\right. \end{aligned}$
	3	$\frac{\sqrt{2}}{5}$	0	0 1 1 $(P$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 1 \\ & i j k=\frac{5}{3}[\end{aligned}$	$\begin{aligned} & \frac{10}{3}\left(S_{x}^{3}-\frac{4}{21} S_{z}\right) \\ & \frac{10}{3}\left(S_{2} S_{y} S_{z}-\frac{7}{20} S_{y}\right) \\ & \frac{5}{3}\left(S_{x} S_{y} S_{x}+S_{2} S_{y} S_{x}\right) \\ & \left.i S_{i}+S_{k} S_{i} S_{i}-\frac{1}{10}\left(S_{i} \delta_{i k}+S_{k} \delta_{i j}\right)-\frac{7}{10} S_{j} \delta_{i k}\right] \end{aligned}$	$\begin{array}{r} \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \end{array}$	

$s \leqslant 2$. Using the initial notation of Cartesian components, i.e. $\left(P_{s l}\right)_{i_{1} \ldots i}$, one has, for instance,

$$
\begin{align*}
& P_{s 0}=1 \tag{83a}\\
& \left(P_{s 1}\right)_{i}=a_{s 1}^{0} S_{i} \tag{83b}\\
& \left(P_{s 2}\right)_{i j}=a_{s 2}^{0}\left\{S_{i} S_{j}\right\}+a_{s 2}^{1} 1 \delta_{i j} \tag{83c}\\
& \left(P_{s 3}\right)_{i j k}=a_{s 3}^{0}\left\{S_{i} S_{j} S_{k}\right\}+\frac{1}{3} a_{s 3}^{1}\left(S_{i} \delta_{i k}+S_{j} \delta_{i k}+S_{k} \delta_{i j}\right) \tag{83d}
\end{align*}
$$

These expressions can be simplified thanks to the commutation relations of spin operators, cf tables 6-8, and, for example,

$$
\begin{equation*}
\left(P_{s 3}\right)_{i j k}=\frac{1}{2} a_{s 3}^{0}\left(S_{i} S_{i} S_{k}+S_{k} S_{j} S_{i}\right)-\frac{1}{6}\left(a_{s 3}^{0}-2 a_{s 3}^{1}\right)\left(S_{i} \delta_{j k}+S_{k} \delta_{i j}\right)+\frac{1}{3}\left(a_{s 3}^{0}+a_{s 3}^{1}\right) S_{j} \delta_{i k} \tag{84}
\end{equation*}
$$

which is different from the formula given by Keaton (1971) for $s=\frac{3}{2}\left(a_{3 / 23}^{0}=\frac{10}{3}\right.$, $a_{3 / 23}^{1}=-\frac{41}{6}$; its expression is not completely symmetrical with respect to the three Cartesian indices). It should be noticed that the relation ($56 b$) allows us to modify the expressions in terms of the spin operators.

3.3. Properties of Cartesian and spherical components of tensors $P_{s i}$

As for the $T_{s l}$ to which they are proportional, the tensors $P_{s l}$ are traceless on contraction of any pair of Cartesian indices, i.e. from equation (20)

$$
\begin{equation*}
\left(P_{s l}\right)_{p^{\prime}+2 q^{\prime} r^{\prime}}+\left(P_{s l}\right)_{p^{\prime} q^{\prime}+2 r^{\prime}}+\left(P_{s i}\right)_{p^{\prime} q^{\prime} r^{\prime}+2}=0 \quad p^{\prime}+q^{\prime}+r^{\prime}=l-2 . \tag{85}
\end{equation*}
$$

It must be possible to check this property using the general formula (82), equation ($56 b$), and taking care of the symmetrised character of products of spin operators. We only check equation (85) for the special cases given in table 5.

The normalisation factor $n_{s l}$ can be obtained up to a sign from the orthogonality relations of the Tchebichef polynomials, equation (A3), and of the operators ($\left.T_{s l}\right)_{m}^{l}$, equation ($66 c$). Its sign then follows from the relative sign between any same matrix element of $\left(P_{s l}\right)_{m}^{l}$ and $\left(T_{s l}\right)_{m}^{l}$. However, this normalisation factor arises directly from the relation (A8b) between the Tchebichef polynomial $t_{l}(\mu+s)$ and the Clebsch-Gordan coefficient $\langle s s \mu-\mu \mid l 0\rangle$. On comparing the values of the matrix element $\langle s \mu|\left(P_{s l}\right)_{0 o l}|s \mu\rangle$ which arises from equations (50), (73) and (76) one finds

$$
\begin{equation*}
n_{s l}=(2 s)!l!\left(\frac{(2 s+1)(2 l+1) 2^{1}}{(2 s-l)!(2 s+l+1)!(2 l)!}\right)^{1 / 2} \tag{86}
\end{equation*}
$$

The values of this factor are listed in table 6 for $s \leqslant 2$. Since $n_{s i}$ is real and the $\left(T_{s t}\right)_{p q r}$ are Hermitian operators, equation (68), we get

$$
\begin{equation*}
\left(P_{s l}\right)_{p q r}^{+}=\left(P_{s l}\right)_{p q r} \tag{87}
\end{equation*}
$$

as also follows from the general formula (82). From equations (69), (71) and (86) any operator A in \mathscr{A}_{s} can be written as
$A=[(2 s)!]^{2} \sum_{l, p, q, r} \delta_{l, p+q+r} \frac{(2 l+1) 2^{l}(l!)^{3}}{p!q!r!(2 s-l)!(2 s+l+1)!(2 l)!}\left(P_{s l}\right)_{p q r} \operatorname{Tr}\left[A\left(P_{s l}\right)_{p q r}\right]$.
As for the $\left(T_{s l}\right)_{p q r}$ the $\left(P_{s l}\right)_{p q r}$ thus form an overcomplete system of non-orthogonal Hermitian operators which span \mathscr{A}_{s}.

As for the irreducible Cartesian tensor $T_{s l}$, the expression for the spherical components of $P_{s i}$ in terms of its Cartesian components is not unique and can be taken as the minimal expansion (24):

$$
\begin{equation*}
\left(P_{s l}\right)_{m}^{l}=\sum_{\substack{p, q, r \\ p+q+r=1}}\left(P_{s l}\right)_{p q r}(p q r \mid l m) \tag{89}
\end{equation*}
$$

Expressing the $\left(P_{s t}\right)_{p q r}$ by equation (82), one then obtains the $\left(P_{s l}\right)_{m}^{l}$ in terms of the spin operators. This result for $l \leqslant 4$ can be obtained by replacing in table 1 the monomials $x^{p} y^{a} z^{r}$ by the $\left(P_{s t}\right)_{p a r}$ listed in table 5 . One thereby finds the expressions given in table 6 for $s \leqslant 2$ and in table 7 for $l \leqslant 4$. In terms of the spherical components $\left(P_{s l}\right)_{m}^{l}$, the

Table 7. Spherical components $\left(P_{s l}\right)_{m}^{l}$, equation (89), in terms of spin operators.

1	m	$c^{-1}\left(P_{s t}\right)_{m}^{1}$
0	0	1
1	$\begin{array}{r} \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \mp \frac{1}{\sqrt{2}} a_{s 1}^{0}\left(S_{x} \pm \mathrm{i} S_{y}\right) \\ & a_{s 1}^{0} S_{z} \end{aligned}$
2	$\begin{array}{r} \pm 2 \\ \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \frac{1}{2} a_{s 2}^{0}\left[S_{x}^{2} \pm \mathrm{i}\left(S_{x} S_{y}+S_{y} S_{x}\right)-S_{y}^{2}\right] \\ & \mp \frac{1}{2} a_{s 2}^{0}\left[S_{x} S_{z}+S_{z} S_{x} \pm \mathrm{i}\left(S_{y} S_{z}+S_{z} S_{y}\right)\right] \\ & \sqrt{\frac{3}{2}}\left(a_{s 2}^{0} S_{z}^{2}+a_{s 2}^{1}\right) \end{aligned}$
3	$\begin{array}{r} \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \end{array}$	$\begin{aligned} & \mp \frac{1}{2 \sqrt{2}} a_{s 3}^{0}\left[S_{x}^{3}-3 S_{y} S_{x} S_{y}-S_{x} \mp \mathrm{i}\left(S_{y}^{3}-3 S_{x} S_{y} S_{x}-S_{y}\right)\right] \\ & \frac{\sqrt{3}}{2} a_{13}^{0}\left[S_{x} S_{z} S_{x}-S_{y} S_{z} S_{y} \pm i\left(S_{x} S_{y} S_{z}+S_{z} S_{S} S_{x}\right)\right] \\ & \mp \frac{1}{2} \sqrt{\frac{1}{2}}\left\{a_{s 3}^{0} S_{z} S_{x} S_{z}+\frac{1}{3}\left(a_{s 3}^{0}+a_{s 3}^{1}\right) S_{x} \pm \mathrm{i}\left[a_{s 3}^{0} S_{z} S_{y} S_{z}+\frac{1}{3}\left(a_{s 3}^{0}+a_{s 3}^{1}\right) S_{y}\right]\right\} \\ & \sqrt{\frac{3}{2}}\left(a_{s 3}^{0} S_{z}^{3}+a_{s 3}^{1} S_{z}\right) \end{aligned}$
4	± 4 ± 3 ± 2 ± 1 0	$\begin{aligned} & \frac{1}{4} a_{s 4}^{0}\left[S_{x}^{4}+S_{y}^{4}-3\left(S_{x}^{2} S_{y}^{2}+S_{y}^{2} S_{x}^{2}\right)+2\left(S_{x}^{2}+S_{y}^{2}\right)-3 S_{z}^{2} \pm 2 \mathrm{i}\left(S_{x}^{3} S_{y}+S_{y} S_{x}^{3}-S_{x} S_{y}^{3}-S_{y}^{3} S_{x}\right)\right] \\ & \mp \frac{1}{2 \sqrt{2}} a_{s 4}^{0}\left\{S_{x}^{3} S_{z}+S_{z} S_{x}^{3}-3\left(S_{x} S_{z} S_{y}^{2}+S_{y}^{2} S_{z} S_{x}\right)+2\left(S_{x} S_{z}+S_{z} S_{x}\right)\right. \\ & \left.\quad \mp \mathrm{i}\left[S_{y}^{3} S_{z}+S_{z} S_{y}^{3}-3\left(S_{z} S_{y} S_{x}^{2}+S_{x}^{2} S_{y} S_{z}\right)+2\left(S_{y} S_{z}+S_{z} S_{y}\right)\right]\right\} \\ & \frac{\sqrt{7}}{4}\left\{a_{s 4}^{0}\left(S_{x}^{2} S_{z}^{2}+S_{z}^{2} S_{x}^{2}-S_{y}^{2} S_{z}^{2}-S_{z}^{2} S_{y}^{2}\right)-\frac{1}{3}\left(5 a_{s 4}^{0}-a_{s 4}^{1}\right)\left(S_{x}^{2}-S_{y}^{2}\right)\right. \\ & \left. \pm \pm\left[2 a_{s 4}^{0}\left(S_{x} S_{y}^{2} S_{z}^{2}+S_{z}^{2} S_{y} S_{x}\right)-\frac{1}{3}\left(5 a_{s 4}^{0}-a_{s 4}^{1}\right)\left(S_{x} S_{y}+S_{y} S_{x}\right)\right]\right\} \\ & \mp \frac{1}{2} \sqrt{\frac{7}{2}\left\{a_{s 4}^{0}\left(S_{x} S_{z}^{3}+S_{z}^{3} S_{x}\right)-\frac{1}{2}\left(a_{s 4}^{0}-a_{s 4}^{1}\right)\left(S_{x} S_{z}+S_{z} S_{x}\right)\right.} \\ & \\ & \left. \pm i\left[a_{s 4}^{0}\left(S_{y} S_{z}^{3}+S_{z}^{3} S_{y}\right)-\frac{1}{2}\left(a_{s 4}^{0}-a_{s 4}^{1}\right)\left(S_{y} S_{z}+S_{z} S_{y}\right)\right]\right\} \\ & \frac{1}{2} \sqrt{\frac{35}{2}}\left(a_{s 4}^{0} S_{z}^{4}+a_{s 4}^{1} S_{z}^{2}+a_{s 4}^{2} 1\right) \end{aligned}$

properties ($66 a-d$) read

$$
\begin{align*}
& \left(P_{s 0}\right)_{0}^{0}=1 \tag{90a}\\
& \left(P_{s l}\right)_{m}^{l+}=c^{-2 l}(-1)^{m}\left(P_{s l}\right)_{-m}^{l} \tag{90b}\\
& \operatorname{Tr}\left[\left(P_{s l}\right)_{m}^{l}\left(P_{s l}\right)_{m}^{l++}\right]=\frac{(2 s-l)!(2 s+l+1)!(2 l)!}{(2 l+1) 2^{l}[(2 s)!l!]^{2}} \delta_{l l} \cdot \delta_{m m^{\prime}} \tag{90c}\\
& A=[(2 s)!]^{2} \sum_{l, m} \frac{(2 l+1) 2^{l}(l!)^{2}}{(2 s-l)!(2 s+l+1)!(2 l)!}\left(P_{s l}\right)_{m}^{l} \operatorname{Tr}\left[A\left(P_{s l}\right)_{m}^{l+}\right] . \tag{90d}
\end{align*}
$$

Hence, the $\left(P_{s i}\right)_{m}^{l}$ form an orthogonal basis of operators in terms of which any operator in \mathscr{A}_{s} can be expressed according to equation ($90 d$).

Instead of the bases of operators $\left(T_{s i}\right)_{m}^{l}$ or $\left(P_{s l}\right)_{m}^{l}$, one can consider the other basis of operators $\left\{A_{s l 0}^{1}, A_{s l m}^{\varepsilon} ; l=0, \ldots, 2 s, m=1, \ldots, l, \varepsilon= \pm 1\right\}$ defined by equation (52),
adding a subscript s, or the proportional operators

$$
\begin{equation*}
C_{s l m}=\frac{1}{n_{s l}} A_{s l m}^{\varepsilon}=\frac{1}{1+\delta_{m 0}}\left(\frac{2^{\prime}(l-m)!(l+m)!}{(2 l)!}\right)^{1 / 2}\left[\left(P_{s l}\right)_{m}^{l}+\varepsilon\left(P_{s l}\right)_{-m}^{l}\right] \tag{91}
\end{equation*}
$$

Using equation (90b), their Hermitian conjugate reads

$$
\begin{equation*}
C_{s l m}^{\varepsilon+}=c^{-2 l}(-1)^{m} \varepsilon C_{s l m}^{\varepsilon}, \tag{92}
\end{equation*}
$$

and equation ($90 c$) yields the orthogonality relation
$\operatorname{Tr}\left(C_{s l m}^{\varepsilon} C_{s l^{\prime} m^{\prime}}^{\varepsilon^{\prime}+}\right)=\frac{2}{1+\delta_{m 0}} \frac{(l-m)!(l+m)!(2 s-l)!(2 s+l+1)!}{(2 l+1)[(2 s)!l!]^{2}} \delta_{\varepsilon e^{e}} \delta_{l l} \delta_{m m^{\prime}}$
for all non-negative m and m^{\prime}. Therefore, any operator A in \mathscr{A}_{s} can be written as

$$
\begin{align*}
A=[(2 s)!]^{2} & \sum_{l=0}^{2 s}
\end{aligned} \begin{aligned}
& \sum_{m=0}^{l} \sum_{\varepsilon= \pm 1} \frac{1+\delta_{m 0}}{2} \\
& \tag{94}\\
&
\end{align*}
$$

where $\varepsilon=1$ if $m=0$. It follows from equation (53) that the $C_{s l m}^{\varepsilon}$ read, in terms of the Cartesian components $\left(P_{s l}\right)_{p q r}$,

$$
\begin{equation*}
C_{s l m}^{\varepsilon}=c^{t}(-1)^{m} \sum_{\mu=0}^{m} \mathrm{i}^{\mu}\binom{m}{\mu} \frac{1+\varepsilon(-1)^{m+\mu}}{1+\delta_{m 0}}\left(P_{s l}\right)_{m-\mu \mu t-m} . \tag{95}
\end{equation*}
$$

The two equations above provide us with a minimal expansion of any operator A in \mathscr{A}_{s} in terms of Cartesian component operators. Namely, any A is then expressed in terms of $(2 s+1)^{2}$ linearly independent linear combinations of the $\left(P_{s i}\right)_{\text {par. }}$. Actually, instead of the $C_{s i m}^{\epsilon}$, one usually considers the quantities

$$
\begin{equation*}
D_{s l m}^{\varepsilon+} \approx B_{m}^{\varepsilon} z^{1-m} \tag{96}
\end{equation*}
$$

where the B_{m}^{ε} are defined by equations ($54 b-e$) and \approx means that each monomial $x^{p} y^{q} z^{r}$ here stands for $\left(P_{s l}\right)_{p q r}$. The $C_{s l m}^{\varepsilon}$ and the $D_{s l m}^{\varepsilon}$ are then related by equation (54a) replacing $A_{l m}^{\varepsilon}$ and $B_{m}^{\epsilon} z^{i-m}$ by $C_{s l m}^{\varepsilon}$ and $D_{s l m}^{\varepsilon}$, respectively. Using tables 3-5, the expressions for the $D_{\text {slm }}^{\varepsilon}$ in terms of the spin operators are listed in table 8 for $l \leqslant 4$. The operators $\left\{D_{s l 0}^{1}, D_{s l m}^{s} ; l=0, \ldots, 2 s, m=1, \ldots, l, \varepsilon= \pm 1\right\}$ are Hermitian,

$$
\begin{equation*}
D_{s l m}^{\varepsilon+}=D_{s l m}^{\varepsilon} \tag{97}
\end{equation*}
$$

and form another orthogonal basis of \mathscr{A}_{s} in terms of which any operator A reads as the minimal expansion

$$
\begin{align*}
A=[(2 s)!]^{2} & \sum_{l=0}^{2 s} \frac{(2 l+1)(l!)^{2}}{(2 s-l)!(2 s+l+1)!}\left\{\sum_{n=0}^{[l / 2]} \frac{2}{1+\delta_{n 0}} \frac{1}{(l-2 n)!(l+2 n)!}\right. \\
& \times\left[D_{s l 2 n}^{1} \operatorname{Tr}\left(A D_{s l 2 n}^{1}\right)+4 n^{2} D_{s l 2 n}^{-1} \operatorname{Tr}\left(A D_{s l 2 n}^{-1}\right)\right] \\
& +\sum_{n=0}^{[(l-1) / 2]} \frac{2}{(l-2 n-1)!(l+2 n+1)!} \\
& \left.\times\left[D_{s l 2 n+1}^{1} \operatorname{Tr}\left(A D_{s l 2 n+1}^{1}\right)+D_{s l 2 n+1}^{-1} \operatorname{Tr}\left(A D_{s l 2 n+1}^{-1}\right)\right]\right\} . \tag{98}
\end{align*}
$$

Table 8. Operators $D_{s t m}^{\varepsilon}$, equation (96), in terms of spin operators. The factor $a_{s i}^{0}$ is the coefficient of the highest degree symmetrised monomial $\left\{S_{x}^{p} S_{y}^{q} S_{z}^{\prime}\right\}$ in $\left(P_{i}\right)_{\text {par }}$ which follows from equation (A11).

l	m	ε	$a_{s l}^{0}=\frac{(2 s-l)!(2 l)!}{(2 s)!(l!)^{2}}$	$\frac{1}{a_{s l}^{0}} D_{s l m}^{e} ; K=s(s+1)$
0	0	1	1	1
1	1	1	$\frac{1}{5}$	S_{y}
		-1		S_{x}
	0	1		S_{z}
2	2	1	$\frac{3}{s(2 s-1)}$	$S_{x}^{2}-S_{y}^{2}$
		-1		$\left\{S_{x} S_{y}\right\}=\frac{1}{2}\left(S_{x} S_{y}+S_{y} S_{x}\right)$
	1	1		$\left\{S_{y} S_{z}\right\}=\frac{1}{2}\left(S_{y} S_{z}+S_{z} S_{y}\right)$
		-1		$\left\{S_{x} S_{z}\right\}=\frac{1}{2}\left(S_{x} S_{z}+S_{z} S_{x}\right)$
	0	1		S_{z}^{3}
3	3	1	$\frac{5}{s(2 s-1)(s-1)}$	$S_{y}^{3}-3\left\{S_{x}^{2} S_{y}\right\}=S_{v}^{3}-3 S_{s} S_{y} S_{x}-S_{v}$
		-1		$S_{x}^{3}-3\left\{S_{x} S_{y}^{2}\right\}=S_{x}^{3}-3 S_{y} S_{x} S_{y}-S_{x}$
	2	1		$\left\{S_{x}^{2} S_{z}\right\}-\left\{S_{y}^{2} S_{z}\right\}=S_{x} S_{z} S_{x}-S_{y} S_{z} S_{y}$
		-1		$\left\{S_{x} S_{y} S_{z}\right\}=\frac{1}{2}\left(S_{x} S_{y} S_{z}+S_{z} S_{y} S_{x}\right)$
	1	1		$\left\{S_{y} S_{z}^{2}\right\}-\frac{1}{15}(3 K-1) S_{y}=S_{z} S_{y} S_{z}-\frac{1}{5}(K-2) S$
		-1		$\left\{S_{x} S_{z}^{2}\right\}-\frac{1}{15}(3 K-1) S_{x}=S_{z} S_{x} S_{z}-\frac{1}{5}(K-2) S$
	0	1		S_{z}^{3}
4	4	1	$\frac{s(2 s-1)(2 s-2)(2 s-3)}{}$	$S_{x}^{4}-6\left\{S_{x}^{2} S_{y}^{2}\right\}+S_{y}^{4}$
		-1		$\left\{S_{x}^{3} S_{y}\right\}-\left\{S_{x} S_{y}^{3}\right\}$
	3	1		$\left\{S_{\gamma}^{3} S_{z}\right\}-3\left\{S_{x}^{2} S_{y} S_{z}\right\}$
		-1		$\left\{S_{x}^{3} S_{z}\right\}-3\left\{S_{x} S_{y}^{2} S_{z}\right\}$
	2	1		$\left\{S_{x}^{2} S_{z}^{2}\right\}-\left\{S_{y}^{2} S_{z}^{2}\right\}-\frac{1}{42}(6 K-5)\left(S_{x}^{2}-S_{y}^{2}\right)$
		-1		$\left\{S_{x} S_{y} S_{z}^{2}\right\}-\frac{1}{42}(6 K-5)\left\{S_{x} S_{y}\right\}$
	1	1		$\left\{S_{y} S_{z}^{3}\right\}-\frac{1}{14}(6 K-5)\left\{S_{y} S_{z}\right\}$
		-1		$\left\{S_{x} S_{z}^{3}\right\}-\frac{1}{14}(6 K-5)\left\{S_{x} S_{z}\right\}$
	0	1		$S_{2}^{4^{x}}$

Using the simplified notation

$$
\begin{equation*}
A_{p q r}^{s}=\operatorname{Tr}\left[A\left(P_{s l}\right)_{p q r}\right] \tag{99}
\end{equation*}
$$

and table 3 , we get explicitly for $l \leqslant 4$

$$
\begin{aligned}
A=\frac{1}{2 s+1}(& \operatorname{Tr} A+\frac{3 s}{s+1}\left[\left(P_{s 1}\right)_{100} A_{100}^{s}+\left(P_{s 1}\right)_{010} A_{010}^{s}+\left(P_{s 1}\right)_{001} A_{001}^{s}\right] \\
& +\frac{5 s(2 s-1)}{(s+1)(2 s+3)}\left\{\frac{1}{3}\left[\left(P_{s 2}\right)_{200}-\left(P_{s 2}\right)_{020}\right]\left(A_{200}^{s}-A_{020}^{s}\right)\right. \\
& \left.+\frac{4}{3}\left[\left(P_{s 2}\right)_{110} A_{110}^{s}+\left(P_{s 2}\right)_{101} A_{101}^{s}+\left(P_{s 2}\right)_{011} A_{011}^{s}\right]+\left(P_{s 2}\right)_{002} A_{002}^{s}\right\} \\
& +\frac{7 s(2 s-1)(s-1)}{(s+1)(2 s+3)(s+2)}\left\{\frac{1}{10}\left[\left(P_{s 3}\right)_{003}-3\left(P_{s 3}\right)_{120}\right]\left(A_{003}^{s}-3 A_{120}^{s}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{10}\left[\left(P_{s 3}\right)_{030}-3\left(P_{s 2}\right)_{210}\right]\left(A_{030}^{s}-3 A_{210}^{s}\right)+\frac{3}{5}\left[\left(P_{s 3}\right)_{201}-\left(P_{s 3}\right)_{021}\right]\left(A_{201}^{s}\right. \\
& \left.\left.-A_{021}^{s}\right)+\frac{12}{5}\left(P_{s 3}\right)_{111} A_{111}^{s}+\frac{3}{2}\left[\left(P_{s 3}\right)_{102} A_{102}^{s}+\left(P_{s 3}\right)_{012} A_{012}^{s}\right]+\left(P_{s 3}\right)_{003} A_{003}^{s}\right\} \\
& +\frac{9 s(2 s-1)(s-1)(2 s-3)}{(s+1)(2 s+3)(s+2)(2 s+5)}\left\{\frac{1}{35}\left[\left(P_{s 4}\right)_{400}-6\left(P_{s 4}\right)_{220}+\left(P_{s 4}\right)_{040}\right]\right. \\
& \times\left(A_{400}^{s}-6 A_{220}^{s}+A_{040}^{s}\right)+\frac{16}{35}\left[\left(P_{s 4}\right)_{310}-\left(P_{s 4}\right)_{130}\right]\left(A_{310}^{s}-A_{130}^{s}\right) \\
& +\frac{8}{35}\left[\left(P_{s 4}\right)_{031}-3\left(P_{s 4}\right)_{211}\right]\left(A_{031}^{s}-3 A_{211}^{s}\right) \\
& +\frac{8}{35}\left[\left(P_{s 4}\right)_{301}-3\left(P_{s 4}\right)_{121}\right]\left(A_{301}^{s}-3 A_{121}^{s}\right) \\
& +\frac{4}{5}\left[\left(P_{s 4}\right)_{202}-\left(P_{s 4}\right)_{022}\right]\left(A_{202}^{s}-A_{022}^{s}\right) \\
& +\frac{16}{5}\left(P_{s 4}\right)_{112} A_{112}^{s}+\frac{8}{5}\left[\left(P_{s 4}\right)_{103} A_{103}^{s}+\left(P_{s 4}\right)_{013} A_{013}^{s}\right] \\
& \left.\left.+\left(P_{s 4}\right)_{004} A_{004}^{s}\right\}+\sum_{l=5}^{2 s} \ldots\right) . \tag{100}
\end{align*}
$$

4. Conclusion

In practice, any operator in \mathscr{A}_{s} is expanded either in terms of the spherical component operators ($\left.T_{s l}\right)_{m}^{i}$, equation ($66 d$), or in terms of the Cartesian component operators $\left(P_{s l}\right)_{p a r}$, equation (88). The first expansion is over an orthogonal basis of operators and the only coefficient, i.e. $(2 s+1)$, arises from the choice of unity as $\left(T_{s 0}\right)_{0}^{0}$. On the other hand, the second expansion is over a superfluous set of non-orthogonal operators and, furthermore, the coefficients have a non-trivial s and l dependence. Taking into account the relation (85) between the ($\left.P_{s t}\right)_{p q r}$, one can extract from this overcomplete set of operators different bases defined by linear combinations of the ($\left.P_{s t}\right)_{\text {pqr }}$. A simple way to do this is given by the minimal expansion (98), and more explicitly by equation (100). This third expansion of any operator is closely related to the first one discussed above, but the coefficients are even more complicated than in the second expansion since they are all different.

The Cartesian component operators and the spherical component operators for $c=1$ coincide with the operators adopted in the Madison convention (1971) for the description of nuclear reactions involving spin $-\frac{1}{2}$ and spin-1 particles. For this type of application and with the choice of coordinate system specified in the convention quoted above, the parity conservation leads us to consider density operators ρ which are symmetrical with respect to the $x 0 z$ plane. One then has

$$
\begin{align*}
& \rho_{i m}^{s}=\operatorname{Tr}\left[\rho\left(T_{s i}\right)_{m}^{l}\right]=(-1)^{i-m} \rho_{i-m}^{s} \tag{101a}\\
& \rho_{p q r}^{s}=\operatorname{Tr}\left[\rho\left(T_{s l}\right)_{p q r}\right]=0 \quad \text { if } p+r \text { odd } \tag{101b}\\
& \rho_{l m}^{s \varepsilon}=\operatorname{Tr}\left[\rho D_{s l m}^{\varepsilon}\right]=0 \quad \text { if }(-1)^{l-m} \neq \varepsilon . \tag{101c}
\end{align*}
$$

To study the azimuthal dependence of a reaction one needs to know how the three types of basis operators depend upon the change of coordinate systems, i.e. a rotation of φ about the z axis. Let us specify by the index φ the quantities defined with respect to the rotated coordinate system. For the first and the third bases one has

$$
\begin{align*}
& { }^{\varphi}\left(T_{s l}\right)_{m}^{l}=\mathrm{e}^{-\mathrm{i} m \varphi}\left(T_{s l}\right)_{m}^{l} \tag{102a}\\
& { }^{\varphi} D_{s l m}^{\varepsilon}=(\cos m \varphi) D_{s l m}^{\varepsilon}+(\sin m \varphi) g_{m}^{\varepsilon} D_{s l m}^{-\varepsilon} \tag{102b}
\end{align*}
$$

where the value of $g_{m}^{\varepsilon}=-\mathrm{i} f_{m}^{\varepsilon} / f_{m}^{\varepsilon}$ follows from equations ($54 b-e$):
$g_{2 n}^{1}=2 n \quad g_{2 n}^{-1}=-\frac{1}{2 n} \quad g_{2 n+1}^{1}=(-1)^{n+1} \quad g_{2 n+1}^{-1}=(-1)^{n}$.
For the Cartesian component operators the expressions are more complicated, since they are given by

$$
\begin{equation*}
{ }^{\varphi}\left(P_{s l}\right)_{p q r} \approx(x \cos \varphi+y \sin \varphi)^{p}(-x \sin \varphi+y \cos \varphi)^{a} z^{r} \tag{104}
\end{equation*}
$$

where \approx means that $x^{p} y^{q} z^{\prime}$ stands for $\left(P_{s l}\right)_{p q r}$. It should be noticed that in the first and third cases the different values of m are not mixed under this rotation, while in the second case all values of p^{\prime} and q^{\prime} such that $p+q=p^{\prime}+q^{\prime}$ are generated. From all these considerations, the use of the spherical component operators ($\left.T_{s i}\right)_{m}^{l}$ appears to be the most convenient one.

As far as the use of the spin operators is concerned, we have given general formulae for the considered basis operators in terms of symmetrised products, equation (78). However, the expressions for these latter products involve many terms.

Acknowledgments

The authors thank E Elbaz and J Meyer (1978) of the Institut de Physique Nucléaire de Lyon who introduced them to the subject by a work in which graphical methods were considered, and who gave them references.

Appendix. Tchebichef's polynomials of a discrete variable

The Tchebichef polynomials $t_{n}(x)$, as defined by Bateman (1953), are the orthogonal polynomials with the weight function 1 of the discrete variable $x=0,1, \ldots, N-1$. One here considers the case

$$
N=2 s+1 \quad n=l \quad x=\mu+s \quad \mu=s, s-1, \ldots,-s
$$

Let us then sum up the properties of the polynomials $t_{l}(\mu+s)$ in which we are interested.

Definition:

$$
\begin{equation*}
t_{l}(\mu+s)=l!\Delta^{\prime}\left[\binom{\mu+s}{l}\binom{\mu-s-1}{l}\right] \quad l=0,1, \ldots, 2 s \tag{A1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta f(\mu)=f(\mu+1)-f(\mu) \quad \Delta^{n+1} f(\mu)=\Delta\left[\Delta^{n} f(\mu)\right] \tag{A2}
\end{equation*}
$$

Orthogonality relation:

$$
\begin{equation*}
\sum_{\mu=-s}^{s} t_{l}(\mu+s) t_{l}(\mu+s)=\frac{(2 s+l+1)!}{(2 l+1)(2 s-l)!} \delta_{l l} \tag{A3}
\end{equation*}
$$

Difference equation:

$(\mu+s+2)(\mu-s+1) \Delta^{2} t_{l}(\mu+s)+[2 \mu+2-l(l+1)] \Delta t_{i}(\mu+s)-l(l+1) t_{l}(\mu+s)=0$.

Recurrence formula:

$$
\begin{gather*}
(l+1) t_{l+1}(\mu+s)-2(2 l+1) \mu t_{l}(\mu+s)+l\left[(2 s+1)^{2}-l^{2}\right] t_{l-1}(\mu+s)=0 \\
l=1,2, \ldots, 2 s-1 \tag{A5}
\end{gather*}
$$

Symmetry property. Parity in μ :

$$
\begin{equation*}
t_{l}(\mu+s)=(-1)^{l_{l}} t_{l}(-\mu+s) \tag{A6}
\end{equation*}
$$

Relation with the generalised hypergeometric function ${ }_{3} F_{2}$:

$$
\begin{equation*}
t_{l}(\mu+s)=(-1)^{l} \frac{(2 s)!}{(2 s-l)!}{ }^{3} F_{2}(-l,-\mu-s, 1+l ; 1,-2 s ; 1) . \tag{A7}
\end{equation*}
$$

Relation with a Clebsch-Gordan coefficient. From the equation above and equation (22) of Varshalovich et al (1975) one has

$$
\begin{align*}
t_{l}(\mu+s) & =(-1)\left(\frac{(2 s+l+1)!}{(2 s+1)(2 s-l)!}\right)^{1 / 2}\langle l s 0 \mu \mid s \mu\rangle \tag{A8a}\\
& =(-1)^{s-\mu}\left(\frac{(2 s+l+1)!}{(2 l+1)(2 s-l)!}\right)^{1 / 2}\langle s s \mu-\mu \mid l 0\rangle \tag{A8b}
\end{align*}
$$

Special values:

$$
\begin{align*}
& t_{l}(s)= \begin{cases}(-1)^{l / 2} l!\binom{l}{l / 2}\binom{s+l / 2}{l / 2} & l \text { even } \\
0 & l \text { odd }\end{cases} \tag{A9}\\
& t_{l}(2 s)=\frac{(2 s)!}{(2 s-l)!} \tag{A10}
\end{align*}
$$

Coefficient of the highest power in μ :

$$
\begin{equation*}
t_{1}(\mu+s)=\frac{(2 l)!}{(l!)^{2}} \mu^{l}+\mathrm{O}\left(\mu^{l-2}\right) \tag{A11}
\end{equation*}
$$

Special cases. The $t(\mu+s)$ are listed in table 4 for $l \leqslant 10$.

References

Bateman H 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) p 223
Coope J A R, Snider R F and McCourt F R 1965 J. Chem. Phys. 43 2269-75
Edmonds A R 1968 Angular Momentum in Quantum Mechanics revised edn (Princeton, NJ: Princeton University Press) p 69
Elbaz E and Meyer J 1978 Rapport LYCEN 7821
Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic) p 24

Goldfarb L J B 1958 Nucl. Phys. 7 622-42
Keaton P W 1971 Proc. Int. Symp. on Polarization Phenomena of Nucleons, Madison 1970 ed H H Barschall and W Haeberli (Madison: The University of Wisconsin Press) pp 422-4
Lakin W 1955 Phys. Rev. 98 139-44
 Barschall and W Haeberli (Madison: The University of Wisconsin Press) pp xxv-xxiv
Normand J M 1980 A Lie Group: Rotations in Quantum Mechanics (Amsterdam: North-Holland) p 177
Normand J M and Raynal J 1981 Proc. Int. Conf. on Polarization Phenomena in Nuclear Physics, Santa Fe 1980 ed G G Ohlsen, R E Brown, N Jarmie, W W McNaughton and G M Hale (New York: American Institute of Physics) pp 997-9
Ohlsen G G 1972 Rep. Prog. Phys. 35 717-801
Raynal J 1964 Thesis Orsay, p 13 (also 1965 Argonne National Laboratory Trans. 258 14)

- 1972 Note CEA-N-1529, p 11

Stone A J 1975 Mol. Phys. 29 1461-71

- 1976 J. Phys. A: Math. Gen. 9 485-97

Varshalovich D A, Moskaliev A N and Kersonskii V K 1975 Quantum Theory of Angular Momenta (in Russian) (Leningrad: Nauka) p 205

